Discovery of new 4-aminoquinoline derivatives containing an amine or hydroxamic acid terminal as multifunctional agents for the treatment of Alzheimer's disease.
{"title":"Discovery of new 4-aminoquinoline derivatives containing an amine or hydroxamic acid terminal as multifunctional agents for the treatment of Alzheimer's disease.","authors":"Bochao Zhai, Qianyun Hao, Mingfan Wang, Zhiqiang Luo, Rui Yang, Jian Yang, Yuqing Cao","doi":"10.1016/j.bioorg.2024.107954","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the multifactorial nature of Alzheimer's disease (AD), effective multi-targeted directed ligands (MTDLs) are urgently needed for its treatment as single-target drugs currently encounter therapeutic challenges. Two series of new 4-aminoquinoline derivatives containing an amine or hydroxamic acid terminal were designed, synthesized and evaluated for their cholinesterase inhibition, antioxidant and metal-ion chelation properties. Among them, hydroxamic acid-containing compounds 7r and 7f exhibited the best inhibitor activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), respectively, with the corresponding IC<sub>50</sub> values of 0.41 and 1.06 μM, which were superior to those of rivastigmine (IC<sub>50</sub> = 5.26, 2.02 μM, respectively). Moreover, compounds 7r and 7f presented excellent ABTS radical scavenging efficiency and selective metal-ion chelation ability such as Cu<sup>2+</sup> and Fe<sup>2+</sup>. Both molecular docking and enzyme kinetic analysis revealed that compound 7r was a mixed-type inhibitor of AChE. Additionally, the ADME prediction indicated that compounds 7r and 7f have suitable pharmacokinetic and drug-like properties. Furthermore, they demonstrated good safety and blood-brain barrier permeability in cytotoxicity assays and in vivo experiments, respectively. These findings strongly suggest that the 4-aminoquinoline derivatives containing a hydroxamic acid terminal have great potential as promising MTDLs for the treatment of AD, opening new avenues for future therapeutic strategies.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107954"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107954","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the multifactorial nature of Alzheimer's disease (AD), effective multi-targeted directed ligands (MTDLs) are urgently needed for its treatment as single-target drugs currently encounter therapeutic challenges. Two series of new 4-aminoquinoline derivatives containing an amine or hydroxamic acid terminal were designed, synthesized and evaluated for their cholinesterase inhibition, antioxidant and metal-ion chelation properties. Among them, hydroxamic acid-containing compounds 7r and 7f exhibited the best inhibitor activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), respectively, with the corresponding IC50 values of 0.41 and 1.06 μM, which were superior to those of rivastigmine (IC50 = 5.26, 2.02 μM, respectively). Moreover, compounds 7r and 7f presented excellent ABTS radical scavenging efficiency and selective metal-ion chelation ability such as Cu2+ and Fe2+. Both molecular docking and enzyme kinetic analysis revealed that compound 7r was a mixed-type inhibitor of AChE. Additionally, the ADME prediction indicated that compounds 7r and 7f have suitable pharmacokinetic and drug-like properties. Furthermore, they demonstrated good safety and blood-brain barrier permeability in cytotoxicity assays and in vivo experiments, respectively. These findings strongly suggest that the 4-aminoquinoline derivatives containing a hydroxamic acid terminal have great potential as promising MTDLs for the treatment of AD, opening new avenues for future therapeutic strategies.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.