{"title":"First-principles study on the adsorption and sensing properties of methyl acetate on VTe2 doped systems (Ti, Sc, Ru, Y)†","authors":"Guan-nan Wang and Hong Zhang","doi":"10.1039/D4CP03497J","DOIUrl":null,"url":null,"abstract":"<p >Transition metal dichalcogenide (TMD) sensors feature a large surface-to-volume ratio, high sensitivity, fast response time, and low energy consumption. Among these materials, VTe<small><sub>2</sub></small>, with its spin polarization, shows potential as a magnetic sensor. This study aims to provide theoretical guidance for the development of methyl acetate sensors by investigating the stability and electronic properties of metal-doped VTe<small><sub>2</sub></small> systems (Ti, Sc, Ru, and Y) using <em>ab initio</em> molecular dynamics (AIMD) simulations at 300 K and density functional theory (DFT) calculations. The results indicate that the doping system can be stable at 300 K. Doping VTe<small><sub>2</sub></small> enhances spin polarization, increases the overall magnetic moment of the system, and maintains good conductivity. This suggests its potential for use in magnetic sensor applications. Among these systems, Ti-, Sc-, and Y-doped surfaces exhibited chemical adsorption, while the Ru-doped surface showed physical adsorption. Additionally, molecular dynamics simulations conducted over 5000 fs at 800 K showed that methyl acetate desorbs from the sensor surface, confirming its recyclability. These results highlight the excellent electrical and magnetic properties of the VTe<small><sub>2</sub></small> doped system, making it a promising candidate for the design of methyl acetate sensors.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 48","pages":" 29825-29833"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp03497j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal dichalcogenide (TMD) sensors feature a large surface-to-volume ratio, high sensitivity, fast response time, and low energy consumption. Among these materials, VTe2, with its spin polarization, shows potential as a magnetic sensor. This study aims to provide theoretical guidance for the development of methyl acetate sensors by investigating the stability and electronic properties of metal-doped VTe2 systems (Ti, Sc, Ru, and Y) using ab initio molecular dynamics (AIMD) simulations at 300 K and density functional theory (DFT) calculations. The results indicate that the doping system can be stable at 300 K. Doping VTe2 enhances spin polarization, increases the overall magnetic moment of the system, and maintains good conductivity. This suggests its potential for use in magnetic sensor applications. Among these systems, Ti-, Sc-, and Y-doped surfaces exhibited chemical adsorption, while the Ru-doped surface showed physical adsorption. Additionally, molecular dynamics simulations conducted over 5000 fs at 800 K showed that methyl acetate desorbs from the sensor surface, confirming its recyclability. These results highlight the excellent electrical and magnetic properties of the VTe2 doped system, making it a promising candidate for the design of methyl acetate sensors.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.