Genetic Algorithm for Atmospheric Correction (GAAC) of water bodies impacted by adjacency effects

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Yanqun Pan , Simon Bélanger
{"title":"Genetic Algorithm for Atmospheric Correction (GAAC) of water bodies impacted by adjacency effects","authors":"Yanqun Pan ,&nbsp;Simon Bélanger","doi":"10.1016/j.rse.2024.114508","DOIUrl":null,"url":null,"abstract":"<div><div>Adjacency effect (AE) corrections over inland water surfaces has been a known issue in space-borne optical remote sensing over more than four decades. Here we present a novel algorithm able to simultaneously retrieve the aerosol optical depth, sun glint, AE, water reflectance, and water inherent optical properties (IOPs). The method was evaluated against an <em>in situ</em> data set of remote sensing reflectance (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></math></span>) collected in <span><math><mo>∼</mo></math></span>100 lakes across Canada. The new algorithm is based on a genetic optimization scheme (GAAC: Genetic Algorithm for Atmospheric Correction), and was here compared to the most popular atmospheric correction algorithms available (ACOLITE, iCOR+SIMEC). The statistical metrics of the <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></math></span> retrieval were improved by a factor of almost 2 in all wavelengths, and for all metrics (Bias, Error, Similarity Angle) relative to other algorithms. Demonstrations of GAAC on scenes of Lansdat-8 OLI, and Sentinel-2 MSI sensors demonstrate the algorithm’s robustness when applied to spatially complex small lake (<span><math><mo>∼</mo></math></span>10 km of width) surfaces.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"317 ","pages":"Article 114508"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005340","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adjacency effect (AE) corrections over inland water surfaces has been a known issue in space-borne optical remote sensing over more than four decades. Here we present a novel algorithm able to simultaneously retrieve the aerosol optical depth, sun glint, AE, water reflectance, and water inherent optical properties (IOPs). The method was evaluated against an in situ data set of remote sensing reflectance (Rrs) collected in 100 lakes across Canada. The new algorithm is based on a genetic optimization scheme (GAAC: Genetic Algorithm for Atmospheric Correction), and was here compared to the most popular atmospheric correction algorithms available (ACOLITE, iCOR+SIMEC). The statistical metrics of the Rrs retrieval were improved by a factor of almost 2 in all wavelengths, and for all metrics (Bias, Error, Similarity Angle) relative to other algorithms. Demonstrations of GAAC on scenes of Lansdat-8 OLI, and Sentinel-2 MSI sensors demonstrate the algorithm’s robustness when applied to spatially complex small lake (10 km of width) surfaces.

Abstract Image

Abstract Image

受邻接效应影响的水体大气校正遗传算法(GAAC)
四十多年来,内陆水面的邻近效应(AE)校正一直是星载光学遥感的一个已知问题。在这里,我们提出了一种新的算法,能够同时检索气溶胶光学深度、太阳眩光、AE、水反射率和水固有光学特性(IOPs)。我们利用在加拿大 100 个湖泊采集的遥感反射率(RrsRrs)原位数据集对该方法进行了评估。新算法基于遗传优化方案(GAAC:用于大气校正的遗传算法),并与目前最流行的大气校正算法(ACOLITE、iCOR+SIMEC)进行了比较。与其他算法相比,RrsRrs 检索的统计指标在所有波长和所有指标(偏差、误差、相似角)上都提高了近 2 倍。GAAC 在 Lansdat-8 OLI 和 Sentinel-2 MSI 传感器场景上的演示证明了该算法在应用于空间复杂的小型湖泊(宽度 ∼ ∼ 10 公里)表面时的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信