Enhanced Anisotropic Second Harmonic Generation in Type-II van der Waals Heterostructures of g-C3N4/BiVO4

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yanhan Ren, Shi Qiu, Shiji Li, Anbing Zhang, Hongsheng Liu, Sergei Guretskii, Dmitry Karpinsky, Rui Li, Junfeng Gao
{"title":"Enhanced Anisotropic Second Harmonic Generation in Type-II van der Waals Heterostructures of g-C3N4/BiVO4","authors":"Yanhan Ren, Shi Qiu, Shiji Li, Anbing Zhang, Hongsheng Liu, Sergei Guretskii, Dmitry Karpinsky, Rui Li, Junfeng Gao","doi":"10.1021/acs.jpcc.4c06756","DOIUrl":null,"url":null,"abstract":"Due to the remarkably strong second-harmonic generation (SHG), two-dimensional materials have excellent potential applications in nonlinear optics (NLOs). However, their SHG efficiency remains limited due to the short light–matter interaction length. Through van der Waals heterostructure (vdWHS) engineering, it is possible to elongate light–matter interacting length and control structural symmetries and anisotropies. Here, vdWHSs were built by noncentrosymmetric monolayer g-C<sub>3</sub>N<sub>4</sub> and centrosymmetric BiVO<sub>4</sub> slabs with varying layers. Their structural stabilities, electronic band structures, band alignments, and SHG susceptibilities have been systematically simulated by DFT calculations. Interestingly, BiVO<sub>4</sub> slabs with two or more layers form stable type-II heterostructures with g-C<sub>3</sub>N<sub>4</sub>, exhibiting the interlayer separation of photogenerated carriers. Besides, vdWHSs broke the centrosymmetry of BiVO<sub>4</sub>, resulting in remarkable and complex SHG responses. The in-plane SHG susceptibility of g-C<sub>3</sub>N<sub>4</sub>/BiVO<sub>4</sub> vdWHSs exceeds 100 pm/V in the 700–800 nm range and gradually decreases as the thickness increases. Significant polarized out-of-plane SHG was introduced by vdWHS. The χ<sub>zxx</sub><sup>(2)</sup>, χ<sub>zxy</sub><sup>(2)</sup>, and χ<sub>zyy</sub><sup>(2)</sup> components show multiple high peaks at 400–780 and 780–1240 nm, with intensities 3 times larger than that of LiNbO<sub>3</sub>. These indicate that such vdWHS composites hold considerable potential for NLO in both visible and infrared light regions, which are important for advanced optical communication and photonic computing systems.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"18 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06756","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the remarkably strong second-harmonic generation (SHG), two-dimensional materials have excellent potential applications in nonlinear optics (NLOs). However, their SHG efficiency remains limited due to the short light–matter interaction length. Through van der Waals heterostructure (vdWHS) engineering, it is possible to elongate light–matter interacting length and control structural symmetries and anisotropies. Here, vdWHSs were built by noncentrosymmetric monolayer g-C3N4 and centrosymmetric BiVO4 slabs with varying layers. Their structural stabilities, electronic band structures, band alignments, and SHG susceptibilities have been systematically simulated by DFT calculations. Interestingly, BiVO4 slabs with two or more layers form stable type-II heterostructures with g-C3N4, exhibiting the interlayer separation of photogenerated carriers. Besides, vdWHSs broke the centrosymmetry of BiVO4, resulting in remarkable and complex SHG responses. The in-plane SHG susceptibility of g-C3N4/BiVO4 vdWHSs exceeds 100 pm/V in the 700–800 nm range and gradually decreases as the thickness increases. Significant polarized out-of-plane SHG was introduced by vdWHS. The χzxx(2), χzxy(2), and χzyy(2) components show multiple high peaks at 400–780 and 780–1240 nm, with intensities 3 times larger than that of LiNbO3. These indicate that such vdWHS composites hold considerable potential for NLO in both visible and infrared light regions, which are important for advanced optical communication and photonic computing systems.

Abstract Image

g-C3N4/BiVO4 的 II 型范德华异质结构中增强的各向异性二次谐波生成
由于具有极强的二次谐波发生(SHG)能力,二维材料在非线性光学(NLO)领域具有极佳的应用潜力。然而,由于光-物质相互作用长度较短,它们的 SHG 效率仍然有限。通过范德华异质结构(vdWHS)工程,可以延长光物质相互作用长度,控制结构对称性和各向异性。在这里,范德华异质结构是由非中心对称单层 g-C3N4 和具有不同层的中心对称 BiVO4 板建成的。我们通过 DFT 计算系统地模拟了它们的结构稳定性、电子带结构、带排列和 SHG 感度。有趣的是,具有两层或更多层的 BiVO4 板与 g-C3N4 形成了稳定的 II 型异质结构,显示了光生载流子的层间分离。此外,vdWHS 打破了 BiVO4 的中心对称性,从而产生了显著而复杂的 SHG 响应。g-C3N4/BiVO4 vdWHS 的面内 SHG 感度在 700-800 纳米范围内超过 100 pm/V,并随着厚度的增加而逐渐降低。vdWHS 带来了显著的极化面外 SHG。χzxx(2)、χzxy(2)和χzyy(2)分量在 400-780 纳米和 780-1240 纳米处显示出多个高峰,其强度是 LiNbO3 的 3 倍。这表明这种 vdWHS 复合材料在可见光和红外光区的 NLO 方面具有相当大的潜力,而这对于先进的光通信和光子计算系统非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信