{"title":"Mapping of the T Cell Landscape of Biliary Tract Cancer Unravels Anatomical Subtype-Specific Heterogeneity","authors":"Jianhua Nie, Shuyuan Zhang, Ying Guo, Caiqi Liu, Jiaqi Shi, Haotian Wu, Ruisi Na, Yingjian Liang, Shan Yu, Fei Quan, Kun Liu, Mingwei Li, Meng Zhou, Ying Zhao, Xuehan Li, Shengnan Luo, Qian Zhang, Guangyu Wang, Yanqiao Zhang, Yuanfei Yao, Yun Xiao, Sheng Tai, Tongsen Zheng","doi":"10.1158/0008-5472.can-24-1173","DOIUrl":null,"url":null,"abstract":"Biliary tract cancer (BTC), encompassing diseases such as intrahepatic (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer (GBC), is not only on the rise but also poses a significant and urgent health threat due to its high malignancy. Genomic differences point to the possibility that these subtypes represent distinct diseases. Elucidation of the specific distribution of T cell subsets, critical to cancer immunity, across these diseases could provide better insights into the unique biology of BTC subtypes and help identify potential precision medicine strategies. To address this, we conducted scRNA-seq and scTCR-seq on CD3+ T cells from 36 samples from 16 BTC patients across all subtypes and analyzed 355 pathological slides to examine the spatial distribution of T cells and tertiary lymphoid structures (TLS). Compared to ICC and GBC, ECC possessed a unique immune profile characterized by T cell exhaustion, elevated CXCL13 expression in CD4+ T helper-like and CD8+CXCL13+ exhausted T cells, more mature TLS, and fewer desert immunophenotypes. Conversely, ICC displayed an inflamed immunophenotype with an enrichment of interferon related pathways and high expression of LGALS1 in activated regulatory T cells, associated with immunosuppression. Inhibition of LGALS1 reduced tumor growth and Treg prevalence in ICC mouse models. Overall, this study unveils T cell diversity across BTC subtypes at the single-cell and spatial level that could open paths for tailored immunotherapies.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"71 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1173","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biliary tract cancer (BTC), encompassing diseases such as intrahepatic (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer (GBC), is not only on the rise but also poses a significant and urgent health threat due to its high malignancy. Genomic differences point to the possibility that these subtypes represent distinct diseases. Elucidation of the specific distribution of T cell subsets, critical to cancer immunity, across these diseases could provide better insights into the unique biology of BTC subtypes and help identify potential precision medicine strategies. To address this, we conducted scRNA-seq and scTCR-seq on CD3+ T cells from 36 samples from 16 BTC patients across all subtypes and analyzed 355 pathological slides to examine the spatial distribution of T cells and tertiary lymphoid structures (TLS). Compared to ICC and GBC, ECC possessed a unique immune profile characterized by T cell exhaustion, elevated CXCL13 expression in CD4+ T helper-like and CD8+CXCL13+ exhausted T cells, more mature TLS, and fewer desert immunophenotypes. Conversely, ICC displayed an inflamed immunophenotype with an enrichment of interferon related pathways and high expression of LGALS1 in activated regulatory T cells, associated with immunosuppression. Inhibition of LGALS1 reduced tumor growth and Treg prevalence in ICC mouse models. Overall, this study unveils T cell diversity across BTC subtypes at the single-cell and spatial level that could open paths for tailored immunotherapies.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.