On the derivation of the homogeneous kinetic wave equation

IF 3.1 1区 数学 Q1 MATHEMATICS
Charles Collot, Pierre Germain
{"title":"On the derivation of the homogeneous kinetic wave equation","authors":"Charles Collot, Pierre Germain","doi":"10.1002/cpa.22232","DOIUrl":null,"url":null,"abstract":"The nonlinear Schrödinger equation in the weakly nonlinear regime with random Gaussian fields as initial data is considered. The problem is set on the torus in any dimension greater than two. A conjecture in statistical physics is that there exists a kinetic time scale depending on the frequency localization of the data and on the strength of the nonlinearity, on which the expectation of the squares of moduli of Fourier modes evolve according to an effective equation: the so‐called kinetic wave equation. When the kinetic time for our setup is 1, we prove this conjecture up to an arbitrarily small polynomial loss. When the kinetic time is larger than 1, we obtain its validity on a more restricted time scale. The key idea of the proof is the use of Feynman interaction diagrams both in the construction of an approximate solution and in the study of its nonlinear stability. We perform a truncated series expansion in the initial data, and obtain bounds in average in various function spaces for its elements. The linearized dynamics then involves a linear Schrödinger equation with a corresponding random potential whose operator norm in Bourgain spaces we are able to estimate on average. This gives a new approach for the analysis of nonlinear wave equations out of equilibrium, and gives hope that refinements of the method could help settle the conjecture.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.22232","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The nonlinear Schrödinger equation in the weakly nonlinear regime with random Gaussian fields as initial data is considered. The problem is set on the torus in any dimension greater than two. A conjecture in statistical physics is that there exists a kinetic time scale depending on the frequency localization of the data and on the strength of the nonlinearity, on which the expectation of the squares of moduli of Fourier modes evolve according to an effective equation: the so‐called kinetic wave equation. When the kinetic time for our setup is 1, we prove this conjecture up to an arbitrarily small polynomial loss. When the kinetic time is larger than 1, we obtain its validity on a more restricted time scale. The key idea of the proof is the use of Feynman interaction diagrams both in the construction of an approximate solution and in the study of its nonlinear stability. We perform a truncated series expansion in the initial data, and obtain bounds in average in various function spaces for its elements. The linearized dynamics then involves a linear Schrödinger equation with a corresponding random potential whose operator norm in Bourgain spaces we are able to estimate on average. This gives a new approach for the analysis of nonlinear wave equations out of equilibrium, and gives hope that refinements of the method could help settle the conjecture.
关于均相动能波方程的推导
研究了以随机高斯场为初始数据的弱非线性薛定谔方程。问题设置在大于二维的环上。统计物理学的一个猜想是,存在一个动能时间尺度,它取决于数据的频率定位和非线性的强度,在此尺度上,傅里叶模的模量平方的期望根据一个有效方程(即所谓的动能波方程)演化。当我们设置的动力学时间为 1 时,我们证明了这一猜想,其多项式损失可任意减小。当动能时间大于 1 时,我们将在更有限的时间尺度上证明其有效性。证明的关键思路是在构建近似解和研究其非线性稳定性时使用费曼相互作用图。我们在初始数据中进行截断级数展开,并在各种函数空间中获得其元素的平均边界。然后,线性化动力学涉及一个线性薛定谔方程和一个相应的随机势,我们能够平均估算其在布尔干空间中的算子规范。这为分析非平衡态非线性波方程提供了一种新方法,并希望该方法的改进能有助于解决这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信