FastTENET: an accelerated TENET algorithm based on manycore computing in Python.

Rakbin Sung, Hyeonkyu Kim, Junil Kim, Daewon Lee
{"title":"FastTENET: an accelerated TENET algorithm based on manycore computing in Python.","authors":"Rakbin Sung, Hyeonkyu Kim, Junil Kim, Daewon Lee","doi":"10.1093/bioinformatics/btae699","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>TENET reconstructs gene regulatory networks from single-cell RNA sequencing (scRNAseq) data using the transfer entropy, and works successfully on a variety of scRNAseq data. However, TENET is limited by its long computation time for large datasets. To address this limitation, we propose FastTENET, an array-computing version of TENET algorithm optimized for acceleration on manycore processors such as GPUs. FastTENET counts the unique patterns of joint events to compute the transfer entropy based on array computing. Compared to TENET, FastTENET achieves up to 973× performance improvement.</p><p><strong>Availability and implementation: </strong>FastTENET is available on GitHub at https://github.com/cxinsys/fasttenet.</p><p><strong>Supplementary information: </strong>Supplementary data is available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: TENET reconstructs gene regulatory networks from single-cell RNA sequencing (scRNAseq) data using the transfer entropy, and works successfully on a variety of scRNAseq data. However, TENET is limited by its long computation time for large datasets. To address this limitation, we propose FastTENET, an array-computing version of TENET algorithm optimized for acceleration on manycore processors such as GPUs. FastTENET counts the unique patterns of joint events to compute the transfer entropy based on array computing. Compared to TENET, FastTENET achieves up to 973× performance improvement.

Availability and implementation: FastTENET is available on GitHub at https://github.com/cxinsys/fasttenet.

Supplementary information: Supplementary data is available at Bioinformatics online.

FastTENET:基于 Python 多核计算的 TENET 加速算法。
摘要:TENET 利用转移熵从单细胞 RNA 测序(scRNAseq)数据中重建基因调控网络,并在各种 scRNAseq 数据上成功运行。然而,TENET 受限于对大型数据集的计算时间过长。为了解决这一限制,我们提出了 FastTENET,这是 TENET 算法的阵列计算版本,经过优化,可在 GPU 等多核处理器上加速。FastTENET 基于阵列计算,计算联合事件的独特模式,从而计算转移熵。与 TENET 相比,FastTENET 实现了高达 973 倍的性能提升:FastTENET可在GitHub上获取:https://github.com/cxinsys/fasttenet.Supplementary:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信