Bianka Alexandra Pasat, Eleftherios Pilalis, Katarzyna Mnich, Afshin Samali, Aristotelis Chatziioannou, Adrienne M Gorman
{"title":"MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses.","authors":"Bianka Alexandra Pasat, Eleftherios Pilalis, Katarzyna Mnich, Afshin Samali, Aristotelis Chatziioannou, Adrienne M Gorman","doi":"10.1093/bioadv/vbae175","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Analysis of gene and isoform expression levels is becoming critical for the detailed understanding of biochemical mechanisms. In addition, integrating RNA-seq data with other omics data types, such as proteomics and metabolomics, provides a strong approach for consolidating our understanding of biological processes across various organizational tiers, thus promoting the identification of potential therapeutic targets.</p><p><strong>Results: </strong>We present our pipeline, called MultiOmicsIntegrator (MOI), an inclusive pipeline for comprehensive omics analyses. MOI represents a unified approach that performs in-depth individual analyses of diverse omics. Specifically, exhaustive analysis of RNA-seq data at the level of genes, isoforms of genes, as well as miRNA is offered, coupled with functional annotation and structure prediction of these transcripts. Additionally, proteomics and metabolomics data are supported providing a holistic view of biological systems. Finally, MOI has tools to integrate simultaneously multiple and diverse omics datasets, with both data- and function-driven approaches, fostering a deeper understanding of intricate biological interactions.</p><p><strong>Availability and implementation: </strong>MOI and ReadTheDocs.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae175"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Analysis of gene and isoform expression levels is becoming critical for the detailed understanding of biochemical mechanisms. In addition, integrating RNA-seq data with other omics data types, such as proteomics and metabolomics, provides a strong approach for consolidating our understanding of biological processes across various organizational tiers, thus promoting the identification of potential therapeutic targets.
Results: We present our pipeline, called MultiOmicsIntegrator (MOI), an inclusive pipeline for comprehensive omics analyses. MOI represents a unified approach that performs in-depth individual analyses of diverse omics. Specifically, exhaustive analysis of RNA-seq data at the level of genes, isoforms of genes, as well as miRNA is offered, coupled with functional annotation and structure prediction of these transcripts. Additionally, proteomics and metabolomics data are supported providing a holistic view of biological systems. Finally, MOI has tools to integrate simultaneously multiple and diverse omics datasets, with both data- and function-driven approaches, fostering a deeper understanding of intricate biological interactions.
Availability and implementation: MOI and ReadTheDocs.