Skewness-Corrected Confidence Intervals for Predictive Values in Enrichment Studies.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Dadong Zhang, Jingye Wang, Suqin Cai, Johan Surtihadi
{"title":"Skewness-Corrected Confidence Intervals for Predictive Values in Enrichment Studies.","authors":"Dadong Zhang, Jingye Wang, Suqin Cai, Johan Surtihadi","doi":"10.1002/sim.10283","DOIUrl":null,"url":null,"abstract":"<p><p>The positive predictive value (PPV) and negative predictive value (NPV) can be expressed as functions of disease prevalence ( <math> <semantics><mrow><mi>ρ</mi></mrow> <annotation>$$ \\rho $$</annotation></semantics> </math> ) and the ratios of two binomial proportions ( <math> <semantics><mrow><mi>ϕ</mi></mrow> <annotation>$$ \\phi $$</annotation></semantics> </math> ), where <math> <semantics> <mrow><msub><mi>ϕ</mi> <mi>ppv</mi></msub> <mo>=</mo> <mfrac><mrow><mn>1</mn> <mo>-</mo> <mtext>specificity</mtext></mrow> <mtext>sensitivity</mtext></mfrac> </mrow> <annotation>$$ {\\phi}_{ppv}=\\frac{1- specificity}{sensitivity} $$</annotation></semantics> </math> and <math> <semantics> <mrow><msub><mi>ϕ</mi> <mi>npv</mi></msub> <mo>=</mo> <mfrac><mrow><mn>1</mn> <mo>-</mo> <mtext>sensitivity</mtext></mrow> <mtext>specificity</mtext></mfrac> </mrow> <annotation>$$ {\\phi}_{npv}=\\frac{1- sensitivity}{specificity} $$</annotation></semantics> </math> . In prospective studies, where the proportion of subjects with the disease in the study cohort is an unbiased estimate of the disease prevalence, the confidence intervals (CIs) of PPV and NPV can be estimated using established methods for single proportion. However, in enrichment studies, such as case-control studies, where the proportion of diseased subjects significantly differs from disease prevalence, estimating CIs for PPV and NPV remains a challenge in terms of skewness and overall coverage, especially under extreme conditions (e.g., <math> <semantics><mrow><mi>NPV</mi> <mo>=</mo> <mn>1</mn></mrow> <annotation>$$ \\mathrm{NPV}=1 $$</annotation></semantics> </math> ). In this article, we extend the method adopted by Li, where CIs for PPV and NPV were derived from those of <math> <semantics><mrow><mi>ϕ</mi></mrow> <annotation>$$ \\phi $$</annotation></semantics> </math> . We explored additional CI methods for <math> <semantics><mrow><mi>ϕ</mi></mrow> <annotation>$$ \\phi $$</annotation></semantics> </math> , including those by Gart & Nam (GN), MoverJ, and Walter and convert their corresponding CIs for PPV and NPV. Through simulations, we compared these methods with established CI methods, Fieller, Pepe, and Delta in terms of skewness and overall coverage. While no method proves universally optimal, GN and MoverJ methods generally emerge as recommended choices.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10283","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The positive predictive value (PPV) and negative predictive value (NPV) can be expressed as functions of disease prevalence ( ρ $$ \rho $$ ) and the ratios of two binomial proportions ( ϕ $$ \phi $$ ), where ϕ ppv = 1 - specificity sensitivity $$ {\phi}_{ppv}=\frac{1- specificity}{sensitivity} $$ and ϕ npv = 1 - sensitivity specificity $$ {\phi}_{npv}=\frac{1- sensitivity}{specificity} $$ . In prospective studies, where the proportion of subjects with the disease in the study cohort is an unbiased estimate of the disease prevalence, the confidence intervals (CIs) of PPV and NPV can be estimated using established methods for single proportion. However, in enrichment studies, such as case-control studies, where the proportion of diseased subjects significantly differs from disease prevalence, estimating CIs for PPV and NPV remains a challenge in terms of skewness and overall coverage, especially under extreme conditions (e.g., NPV = 1 $$ \mathrm{NPV}=1 $$ ). In this article, we extend the method adopted by Li, where CIs for PPV and NPV were derived from those of ϕ $$ \phi $$ . We explored additional CI methods for ϕ $$ \phi $$ , including those by Gart & Nam (GN), MoverJ, and Walter and convert their corresponding CIs for PPV and NPV. Through simulations, we compared these methods with established CI methods, Fieller, Pepe, and Delta in terms of skewness and overall coverage. While no method proves universally optimal, GN and MoverJ methods generally emerge as recommended choices.

富集研究中预测值的斜度校正置信区间。
阳性预测值(PPV)和阴性预测值(NPV)可以表示为疾病流行率(ρ $$ \rho $$)和两个二项式比例(j $$ \phi $$)的函数、其中,ϕ ppv = 1 - 特异性敏感性 $$ {\phi}_{ppv}=\frac{1- 特异性}{敏感性} $$ 和 ϕ npv = 1 - 敏感性特异性 $$ {\phi}_{npv}=\frac{1- 敏感性}{特异性} $$ 。在前瞻性研究中,研究队列中患病受试者的比例是对疾病患病率的无偏估计,因此 PPV 和 NPV 的置信区间 (CIs) 可以使用单比例的既定方法进行估计。然而,在病例对照研究等富集研究中,患病受试者的比例与疾病流行率存在显著差异,因此从偏度和总体覆盖率的角度来看,尤其是在极端条件下(如 NPV = 1 $$ \mathrm{NPV}=1 $$),估计 PPV 和 NPV 的置信区间仍是一项挑战。在本文中,我们扩展了 Li 所采用的方法,其中 PPV 和 NPV 的 CI 是根据 ϕ $$ \phi $$ 的 CI 得出的。我们还探索了其他的 ϕ $$ \phi $$ CI 方法,包括 Gart & Nam (GN)、MoverJ 和 Walter 的方法,并转换了它们相应的 PPV 和 NPV CI。通过模拟,我们将这些方法与已有的 CI 方法、Fieller、Pepe 和 Delta 在偏度和总体覆盖率方面进行了比较。虽然没有一种方法被证明是普遍最优的,但 GN 和 MoverJ 方法通常是推荐的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信