{"title":"Accurate depth of anesthesia monitoring based on EEG signal complexity and frequency features.","authors":"Tianning Li, Yi Huang, Peng Wen, Yan Li","doi":"10.1186/s40708-024-00241-y","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate monitoring of the depth of anesthesia (DoA) is essential for ensuring patient safety and effective anesthesia management. Existing methods, such as the Bispectral Index (BIS), are limited in real-time accuracy and robustness. Current methods have problems in generalizability across diverse patient datasets and are sensitive to artifacts, making it difficult to provide reliable DoA assessments in real time. This study proposes a novel method for DoA monitoring using EEG signals, focusing on accuracy, robustness, and real-time application. EEG signals were pre-processed using wavelet denoising and discrete wavelet transform (DWT). Features such as Permutation Lempel-Ziv Complexity (PLZC) and Power Spectral Density (PSD) were extracted. A random forest regression model was employed to estimate anesthetic states, and an unsupervised learning method using the Hurst exponent algorithm and hierarchical clustering was introduced to detect transitions between anesthesia states. The method was tested on two independent datasets (UniSQ and VitalDB), achieving an average Pearson correlation coefficient of 0.86 and 0.82, respectively. For the combined dataset, the model demonstrated an R-squared value of 0.70, a RMSE of 6.31, a MAE of 8.38, and a Pearson correlation of 0.84, showcasing its robustness and generalizability. This approach offers a more accurate and reliable real-time DoA monitoring tool that could significantly improve patient safety and anesthesia management, especially in diverse clinical environments.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"28"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00241-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate monitoring of the depth of anesthesia (DoA) is essential for ensuring patient safety and effective anesthesia management. Existing methods, such as the Bispectral Index (BIS), are limited in real-time accuracy and robustness. Current methods have problems in generalizability across diverse patient datasets and are sensitive to artifacts, making it difficult to provide reliable DoA assessments in real time. This study proposes a novel method for DoA monitoring using EEG signals, focusing on accuracy, robustness, and real-time application. EEG signals were pre-processed using wavelet denoising and discrete wavelet transform (DWT). Features such as Permutation Lempel-Ziv Complexity (PLZC) and Power Spectral Density (PSD) were extracted. A random forest regression model was employed to estimate anesthetic states, and an unsupervised learning method using the Hurst exponent algorithm and hierarchical clustering was introduced to detect transitions between anesthesia states. The method was tested on two independent datasets (UniSQ and VitalDB), achieving an average Pearson correlation coefficient of 0.86 and 0.82, respectively. For the combined dataset, the model demonstrated an R-squared value of 0.70, a RMSE of 6.31, a MAE of 8.38, and a Pearson correlation of 0.84, showcasing its robustness and generalizability. This approach offers a more accurate and reliable real-time DoA monitoring tool that could significantly improve patient safety and anesthesia management, especially in diverse clinical environments.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing