A novel proposition of radiation energy conservation in radiation dose deformation using deformable image registration.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Jihun Kim, Kyungho Yoon, Jun Won Kim, Jin Sung Kim
{"title":"A novel proposition of radiation energy conservation in radiation dose deformation using deformable image registration.","authors":"Jihun Kim, Kyungho Yoon, Jun Won Kim, Jin Sung Kim","doi":"10.1088/1361-6560/ad9542","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study is to analytically derive and validate a novel radiation energy conservation principle for dose mapping via DIR. &#xD;Approach: A radiation energy conservation principle for the DIR-based dose-deforming process was theoretically derived with a consideration of the volumetric Jacobian and proven using synthetic examples and a patient case. Furthermore, an energy difference error was proposed that can be used to evaluate the DIR-based dose accumulation uncertainty. For the analytical validation of the proposed energy conservation principle, a synthetic isotropic deformation was considered, and artificial deformation uncertainties were introduced. For the validation with a patient case, a ground truth set of CT images and the corresponding deformation was generated. Radiation energy calculation was performed using both the ground truth deformation and another deformation with uncertainty. &#xD;Main results: The suggested energy conservation principle was preserved with uncertainty-free deformation, but not with error-containing deformations using both the synthetic examples and the patient case. For a synthetic example with a tumor volume reduction of 27.1% (10% reduction in length in all directions), the energy difference error was calculated to be -29.8% and 37.2% for an over-deforming and under-deforming DIR uncertainty of 0.3 cm. The energy difference error for the patient case (tumor volume reduction of 37.6%) was 2.9% for a displacement vector field with a registration error of 2.0 ± 3.2 mm. &#xD;Significance: A novel energy conservation principle for DIR-based dose deformation and the corresponding energy difference error were mathematically formulated and successfully validated using simple synthetic examples and a patient example. With a consideration of the volumetric Jacobian, this investigation proposed a radiation energy conservation principle which can be met only with uncertainty-free deformations.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9542","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The purpose of this study is to analytically derive and validate a novel radiation energy conservation principle for dose mapping via DIR. Approach: A radiation energy conservation principle for the DIR-based dose-deforming process was theoretically derived with a consideration of the volumetric Jacobian and proven using synthetic examples and a patient case. Furthermore, an energy difference error was proposed that can be used to evaluate the DIR-based dose accumulation uncertainty. For the analytical validation of the proposed energy conservation principle, a synthetic isotropic deformation was considered, and artificial deformation uncertainties were introduced. For the validation with a patient case, a ground truth set of CT images and the corresponding deformation was generated. Radiation energy calculation was performed using both the ground truth deformation and another deformation with uncertainty. Main results: The suggested energy conservation principle was preserved with uncertainty-free deformation, but not with error-containing deformations using both the synthetic examples and the patient case. For a synthetic example with a tumor volume reduction of 27.1% (10% reduction in length in all directions), the energy difference error was calculated to be -29.8% and 37.2% for an over-deforming and under-deforming DIR uncertainty of 0.3 cm. The energy difference error for the patient case (tumor volume reduction of 37.6%) was 2.9% for a displacement vector field with a registration error of 2.0 ± 3.2 mm. Significance: A novel energy conservation principle for DIR-based dose deformation and the corresponding energy difference error were mathematically formulated and successfully validated using simple synthetic examples and a patient example. With a consideration of the volumetric Jacobian, this investigation proposed a radiation energy conservation principle which can be met only with uncertainty-free deformations.

利用可变形图像配准在辐射剂量变形中实现辐射能量守恒的新主张。
研究目的本研究的目的是分析推导并验证通过 DIR 进行剂量映射的新型辐射能量守恒原理:理论上推导出了基于 DIR 的剂量变形过程的辐射能量守恒原理,其中考虑到了容积雅各布因子,并使用合成示例和患者病例进行了验证。此外,还提出了一种能量差误差,可用于评估基于 DIR 的剂量累积不确定性。为了对提出的能量守恒原理进行分析验证,考虑了合成各向同性形变,并引入了人工形变不确定性。为了对患者病例进行验证,生成了一组基本真实的 CT 图像和相应的形变。辐射能量计算同时使用了地面真实形变和另一个不确定形变:在合成示例和患者病例中,建议的能量守恒原则在无不确定性变形中得以保留,而在含误差变形中则无法保留。对于肿瘤体积缩小 27.1%(所有方向的长度均缩小 10%)的合成示例,计算出的能量差误差分别为-29.8%和 37.2%,其中过变形和欠变形 DIR 的不确定性分别为 0.3 厘米。患者病例(肿瘤体积缩小 37.6%)的能量差误差为 2.9%,位移矢量场的配准误差为 2.0 ± 3.2 毫米:针对基于 DIR 的剂量变形提出了新的能量守恒原理和相应的能量差误差,并通过简单的合成示例和患者示例进行了成功验证。考虑到容积雅各布,这项研究提出了辐射能量守恒原理,该原理只有在无不确定性变形的情况下才能实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信