Mouse Small Intestinal Organoid Cultures.

Q4 Biochemistry, Genetics and Molecular Biology
Lei Chen, Xiaoting Xu
{"title":"Mouse Small Intestinal Organoid Cultures.","authors":"Lei Chen, Xiaoting Xu","doi":"10.1007/7651_2024_576","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal epithelium is a highly dynamic and self-renewing tissue that is crucial for maintaining gut homeostasis. It can be cultured in vitro from isolated crypts to form three-dimensional (3D) intestinal organoids. These organoids have the ability to proliferate and differentiate into various epithelial cell lineages, offering a more physiologically relevant model compared to traditional two-dimensional (2D) culture systems. Mesenchymal cells, located near epithelial cells, regulate epithelial behavior through paracrine signaling and provide structural support. Building on recent advances in the biology of epithelial and mesenchymal cells, we have developed a coculture system that integrates intestinal organoids with mesenchymal cells. In this system, intestinal organoids are cultured in direct or indirect contact with mesenchymal cells, allowing for the simulation of signal exchange and interactions within the in vivo-like microenvironment. This coculture system not only preserves the 3D architecture of the organoids but also enhances their physiological relevance by introducing cellular complexity. The system is capable of long-term maintenance and is adaptable to a wide range of experimental manipulations. As such, this coculture model serves as a powerful tool for studying the interactions between the intestinal epithelium and its surrounding stroma, providing new insights into stem cell biology, tissue regeneration, and disease mechanisms. Here, we introduce the methods of mouse crypt isolation, intestinal organoid culture, and its coculture with mesenchymal cell.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The intestinal epithelium is a highly dynamic and self-renewing tissue that is crucial for maintaining gut homeostasis. It can be cultured in vitro from isolated crypts to form three-dimensional (3D) intestinal organoids. These organoids have the ability to proliferate and differentiate into various epithelial cell lineages, offering a more physiologically relevant model compared to traditional two-dimensional (2D) culture systems. Mesenchymal cells, located near epithelial cells, regulate epithelial behavior through paracrine signaling and provide structural support. Building on recent advances in the biology of epithelial and mesenchymal cells, we have developed a coculture system that integrates intestinal organoids with mesenchymal cells. In this system, intestinal organoids are cultured in direct or indirect contact with mesenchymal cells, allowing for the simulation of signal exchange and interactions within the in vivo-like microenvironment. This coculture system not only preserves the 3D architecture of the organoids but also enhances their physiological relevance by introducing cellular complexity. The system is capable of long-term maintenance and is adaptable to a wide range of experimental manipulations. As such, this coculture model serves as a powerful tool for studying the interactions between the intestinal epithelium and its surrounding stroma, providing new insights into stem cell biology, tissue regeneration, and disease mechanisms. Here, we introduce the methods of mouse crypt isolation, intestinal organoid culture, and its coculture with mesenchymal cell.

小鼠小肠类器官培养物
肠上皮是一种高度动态和自我更新的组织,对维持肠道平衡至关重要。它可以从分离的隐窝进行体外培养,形成三维(3D)肠道器官组织。与传统的二维(2D)培养系统相比,这些器官组织具有增殖和分化成各种上皮细胞系的能力,提供了更贴近生理的模型。位于上皮细胞附近的间充质细胞通过旁分泌信号调节上皮细胞的行为,并提供结构支持。基于上皮细胞和间充质细胞生物学的最新进展,我们开发了一种将肠器官组织与间充质细胞结合在一起的共培养系统。在这一系统中,肠道器官组织与间充质细胞直接或间接接触培养,从而可以模拟体内微环境中的信号交换和相互作用。这种共培养系统不仅保留了器官组织的三维结构,还通过引入细胞复杂性增强了其生理相关性。该系统能够长期保持,并能适应各种实验操作。因此,这种共培养模型是研究肠上皮与其周围基质相互作用的有力工具,为干细胞生物学、组织再生和疾病机制提供了新的见解。在此,我们将介绍小鼠隐窝分离、肠道类器官培养及其与间充质细胞共培养的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信