{"title":"Insights into the role of N6-methyladenosine (m6A) in plant-virus interactions.","authors":"Nicola Secco, Arsheed H Sheikh, Heribert Hirt","doi":"10.1128/jvi.01598-24","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m6A) is a common and dynamic epitranscriptomic modification in eukaryotic RNAs, affecting stability, splicing, translation, and degradation. Recent technological advancements have revealed the complex nature of m6A modifications, highlighting their importance in plant and animal species. The m6A modification is a reversible process, with \"writers\" depositing methylation, \"erasers\" demethylating it, and \"reader\" proteins recognizing m6A and executing various biological functions. Studying the relationship between m6A methylation and viral infection is crucial. Animal viruses, including retroviruses, RNA viruses, and DNA viruses, often employ the host's m6A machinery to replicate or avoid immune responses. In plant viruses, host methyltransferases or demethylases can stabilize or degrade viral RNA, depending on the virus-host interaction. Additionally, viral infections can modify the host's m6A machinery, impacting the viral life cycle. This review examines the role of m6A modifications in plant viral pathogenesis, focussing on RNA viruses infecting crops like alfalfa, turnip, wheat, rice, and potato. Understanding the role of m6A in virus-host interactions can aid in studying plant viral disease development and discovering novel antiviral targets for crop protection. In this review, we summarize current information on m6A in RNA biology, focussing on its function in viral infections and plant-virus interactions.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0159824"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01598-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenosine (m6A) is a common and dynamic epitranscriptomic modification in eukaryotic RNAs, affecting stability, splicing, translation, and degradation. Recent technological advancements have revealed the complex nature of m6A modifications, highlighting their importance in plant and animal species. The m6A modification is a reversible process, with "writers" depositing methylation, "erasers" demethylating it, and "reader" proteins recognizing m6A and executing various biological functions. Studying the relationship between m6A methylation and viral infection is crucial. Animal viruses, including retroviruses, RNA viruses, and DNA viruses, often employ the host's m6A machinery to replicate or avoid immune responses. In plant viruses, host methyltransferases or demethylases can stabilize or degrade viral RNA, depending on the virus-host interaction. Additionally, viral infections can modify the host's m6A machinery, impacting the viral life cycle. This review examines the role of m6A modifications in plant viral pathogenesis, focussing on RNA viruses infecting crops like alfalfa, turnip, wheat, rice, and potato. Understanding the role of m6A in virus-host interactions can aid in studying plant viral disease development and discovering novel antiviral targets for crop protection. In this review, we summarize current information on m6A in RNA biology, focussing on its function in viral infections and plant-virus interactions.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.