{"title":"Identification and expression analysis of the SPL gene family during flower bud differentiation in Rhododendron molle.","authors":"Dongmei Zhu, Xingmin Geng, Fanyu Zeng, Shida Xu, Jieyu Peng","doi":"10.1007/s13258-024-01593-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The family of SQUAMOSA promoter binding protein-like (SPL) transcription factors is essential for regulating plant growth and development. While this SPL gene functional research has been limited in Rhododendron molle (R. molle).</p><p><strong>Objective: </strong>To preliminarily explore the regulatory mechanism of the SPL gene in flower bud development of R. molle.</p><p><strong>Methods: </strong>In this study, for R. molle, the flower bud differentiation period was determined by observing the morphological anatomy of the flower bud. The SPL gene family members were identified based on the R. molle genome, Additionally, the expressions of RmSPL genes at five flower bud differentiation stages were analyzed via Quantitative reverse transcription PCR (RT-qPCR).</p><p><strong>Results: </strong>We first characterized 20 SPL family members in the reference genome of R. molle. The phylogenetic analysis of plant SPL proteins separated them into eight subfamilies (G1-G8) according to conserved gene structures and protein motifs. Cis-elements of promoter region analysis showed that RmSPL genes were regulated by light, phytohormones, stress response, and plant growth and development and may play a critical role in the photoresponse, abasic acid, anaerobic induction, and meristematic expression. Gene expression analysis showed that 18 RmSPL genes were differentially expressed in different developing flower buds. In particular, RmSPL1/7/8/12/13 exhibited significantly different expressions, suggesting that they were likely essential genes for regulating the differentiation of flower buds.</p><p><strong>Conclusion: </strong>In conclusion, our analysis of RmSPL genes provides a theoretical basis and reference for future functional analysis of RmSPL genes in the flower bud differentiation of R. molle.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01593-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The family of SQUAMOSA promoter binding protein-like (SPL) transcription factors is essential for regulating plant growth and development. While this SPL gene functional research has been limited in Rhododendron molle (R. molle).
Objective: To preliminarily explore the regulatory mechanism of the SPL gene in flower bud development of R. molle.
Methods: In this study, for R. molle, the flower bud differentiation period was determined by observing the morphological anatomy of the flower bud. The SPL gene family members were identified based on the R. molle genome, Additionally, the expressions of RmSPL genes at five flower bud differentiation stages were analyzed via Quantitative reverse transcription PCR (RT-qPCR).
Results: We first characterized 20 SPL family members in the reference genome of R. molle. The phylogenetic analysis of plant SPL proteins separated them into eight subfamilies (G1-G8) according to conserved gene structures and protein motifs. Cis-elements of promoter region analysis showed that RmSPL genes were regulated by light, phytohormones, stress response, and plant growth and development and may play a critical role in the photoresponse, abasic acid, anaerobic induction, and meristematic expression. Gene expression analysis showed that 18 RmSPL genes were differentially expressed in different developing flower buds. In particular, RmSPL1/7/8/12/13 exhibited significantly different expressions, suggesting that they were likely essential genes for regulating the differentiation of flower buds.
Conclusion: In conclusion, our analysis of RmSPL genes provides a theoretical basis and reference for future functional analysis of RmSPL genes in the flower bud differentiation of R. molle.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.