Directed Evolution of an Adenylation Domain Alters Substrate Specificity and Generates a New Catechol Siderophore in Escherichia coli.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Erin Conley, Caryn S Wadler, Bailey A Bell, Ivy Lucier, Caroline Haynie, Sophie Eldred, Valerie Nguyen, Tim S Bugni, Michael G Thomas
{"title":"Directed Evolution of an Adenylation Domain Alters Substrate Specificity and Generates a New Catechol Siderophore in <i>Escherichia coli</i>.","authors":"Erin Conley, Caryn S Wadler, Bailey A Bell, Ivy Lucier, Caroline Haynie, Sophie Eldred, Valerie Nguyen, Tim S Bugni, Michael G Thomas","doi":"10.1021/acs.biochem.4c00499","DOIUrl":null,"url":null,"abstract":"<p><p>Nonribosomal peptide synthetases (NRPS) biosynthesize numerous natural products with therapeutic, agricultural, and industrial significance. Reliably altering substrate selection in these enzymes has been a longstanding goal, as this would enable the production of tailor-made peptides with desired activities. In this study, the NRPS EntF and the associated biosynthesis of the siderophore enterobactin (ENT) were used as a model system to interrogate substrate selection by an adenylation (A) domain. We employed a directed evolution pipeline that harnesses an <i>in vivo</i> genetic selection for siderophore production to alter A domain substrate selection. Surprisingly, this led to the formation of a new, physiologically active catechol siderophore in <i>Escherichia coli</i>. We characterized the enzyme variants <i>in vitro</i> and demonstrated transferability of our findings to the well-studied TycC and GrsB NRPSs. This work identifies critical binding pocket residues that allow for altered substrate selection in our model system and expands upon our understanding of iron acquisition in <i>E. coli</i>.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00499","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonribosomal peptide synthetases (NRPS) biosynthesize numerous natural products with therapeutic, agricultural, and industrial significance. Reliably altering substrate selection in these enzymes has been a longstanding goal, as this would enable the production of tailor-made peptides with desired activities. In this study, the NRPS EntF and the associated biosynthesis of the siderophore enterobactin (ENT) were used as a model system to interrogate substrate selection by an adenylation (A) domain. We employed a directed evolution pipeline that harnesses an in vivo genetic selection for siderophore production to alter A domain substrate selection. Surprisingly, this led to the formation of a new, physiologically active catechol siderophore in Escherichia coli. We characterized the enzyme variants in vitro and demonstrated transferability of our findings to the well-studied TycC and GrsB NRPSs. This work identifies critical binding pocket residues that allow for altered substrate selection in our model system and expands upon our understanding of iron acquisition in E. coli.

腺苷酸化域的定向进化改变了大肠杆菌的底物特异性并产生了一种新的儿茶酚苷元。
非核糖体肽合成酶(NRPS)可生物合成大量具有治疗、农业和工业意义的天然产品。可靠地改变这些酶的底物选择一直是一个长期目标,因为这样就能生产出具有所需活性的定制肽。在本研究中,我们将 NRPS EntF 和相关的苷酸性物质肠杆菌素(ENT)的生物合成作为一个模型系统来研究腺苷酸化(A)结构域对底物的选择。我们采用了一种定向进化方法,利用体内苷元生成的遗传选择来改变 A 结构域的底物选择。令人惊讶的是,这导致在大肠杆菌中形成了一种新的、具有生理活性的儿茶酚苷元。我们在体外鉴定了酶变体的特征,并证明了我们的研究结果可以转移到研究充分的 TycC 和 GrsB NRPSs 上。这项工作确定了关键的结合袋残基,这些残基允许在我们的模型系统中改变底物选择,并扩展了我们对大肠杆菌铁获取的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信