Yuhong Gan, Zhengping Li, Baolian Fan, Zhongju Ji, Lu Yang, Yuhong Wu, Qiongyu Ye, Aijia Ji, Zhongqiu Liu, Lixin Duan
{"title":"De Novo Biosynthesis of a Polyene-Type Ginsenoside Precursor Dammaradienol in <i>Saccharomyces cerevisiae</i>.","authors":"Yuhong Gan, Zhengping Li, Baolian Fan, Zhongju Ji, Lu Yang, Yuhong Wu, Qiongyu Ye, Aijia Ji, Zhongqiu Liu, Lixin Duan","doi":"10.1021/acssynbio.4c00396","DOIUrl":null,"url":null,"abstract":"<p><p>Typical dammarane-type ginsenosides are well-known tetracyclic triterpenoids with significant pharmacological effects including antitumor, cardiovascular protection, and neuroprotection. Polyene-type ginsenosides exhibit stronger biological activities than common ginsenosides; however, their contents are low, and most are converted from ginsenosides through a series of processing steps, resulting in higher preparation costs. In this study, a dammaradienol synthase, AarOSC20433, was identified for the first time from <i>Artemisia argyi</i> H. Lév. & Vaniot (<i>A. argyi</i>). The high-yielding squalene strain constructed in this study was used as the chassis strain. Yeast heterologous biosynthesis of the polyene-type ginsenoside precursor dammaradienol was achieved via metabolic engineering strategies, including optimization of the terpene supply, increase in copy number of AarOSC20433, and rational enzyme design. Eventually, through replenishment and batch fermentation, the titer of dammaradienol reached 1.037 g/L (4.3 mg/L/OD), laying a solid foundation for the construction of a polyene-type ginsenoside cell factory.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"4015-4026"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00396","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Typical dammarane-type ginsenosides are well-known tetracyclic triterpenoids with significant pharmacological effects including antitumor, cardiovascular protection, and neuroprotection. Polyene-type ginsenosides exhibit stronger biological activities than common ginsenosides; however, their contents are low, and most are converted from ginsenosides through a series of processing steps, resulting in higher preparation costs. In this study, a dammaradienol synthase, AarOSC20433, was identified for the first time from Artemisia argyi H. Lév. & Vaniot (A. argyi). The high-yielding squalene strain constructed in this study was used as the chassis strain. Yeast heterologous biosynthesis of the polyene-type ginsenoside precursor dammaradienol was achieved via metabolic engineering strategies, including optimization of the terpene supply, increase in copy number of AarOSC20433, and rational enzyme design. Eventually, through replenishment and batch fermentation, the titer of dammaradienol reached 1.037 g/L (4.3 mg/L/OD), laying a solid foundation for the construction of a polyene-type ginsenoside cell factory.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.