{"title":"Chaperone-Mediated Autophagy Alleviates Cerebral Ischemia–Reperfusion Injury by Inhibiting P53-Mediated Mitochondria-Associated Apoptosis","authors":"Shaonan Yang, Lu Jiang, Ling Deng, Jingjing Luo, Xiaoling Zhang, Sha Chen, Zhi Dong","doi":"10.1007/s11064-024-04266-x","DOIUrl":null,"url":null,"abstract":"<div><p>Ischemia–reperfusion is a complex brain disease involving multiple biological processes, including autophagy, oxidative stress, and mitochondria-associated apoptosis. Chaperone-mediated autophagy (CMA), a selective autophagy, is involved in the development of various neurodegenerative diseases and acute nerve injury, but its role in ischemia–reperfusion is unclear. Here, we used middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen–glucose deprivation/reoxygenation (OGD/R) models to simulate cerebral ischemic stroke in vivo and in vitro, respectively. LAMP2A (lysosome-associated membrane protein 2A), a key molecule of CMA, was dramatically downregulated in ischemia–reperfusion. Enhancement of CMA activity by LAMP2A overexpression reduced the neurological deficit, brain infarct volume, pathological features, and neuronal apoptosis of the cortex in vivo. Concomitantly, enhanced CMA activity alleviated OGD/R-induced apoptosis and mitochondrial membrane potential decline in vitro. In addition, we found that CMA inhibited the P53(Tumor protein p53) signaling pathway and reduced P53 translocation to mitochondria. The P53 activator, Nutlin-3, not only reversed the inhibitory effect of CMA on apoptosis, but also significantly weakened the protective effect of CMA on OGD/R and MCAO/R. Taken together, these results indicate that inhibition of P53-mediated mitochondria-associated apoptosis is essential for the neuroprotective effect of CMA against ischemia–reperfusion.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04266-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemia–reperfusion is a complex brain disease involving multiple biological processes, including autophagy, oxidative stress, and mitochondria-associated apoptosis. Chaperone-mediated autophagy (CMA), a selective autophagy, is involved in the development of various neurodegenerative diseases and acute nerve injury, but its role in ischemia–reperfusion is unclear. Here, we used middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen–glucose deprivation/reoxygenation (OGD/R) models to simulate cerebral ischemic stroke in vivo and in vitro, respectively. LAMP2A (lysosome-associated membrane protein 2A), a key molecule of CMA, was dramatically downregulated in ischemia–reperfusion. Enhancement of CMA activity by LAMP2A overexpression reduced the neurological deficit, brain infarct volume, pathological features, and neuronal apoptosis of the cortex in vivo. Concomitantly, enhanced CMA activity alleviated OGD/R-induced apoptosis and mitochondrial membrane potential decline in vitro. In addition, we found that CMA inhibited the P53(Tumor protein p53) signaling pathway and reduced P53 translocation to mitochondria. The P53 activator, Nutlin-3, not only reversed the inhibitory effect of CMA on apoptosis, but also significantly weakened the protective effect of CMA on OGD/R and MCAO/R. Taken together, these results indicate that inhibition of P53-mediated mitochondria-associated apoptosis is essential for the neuroprotective effect of CMA against ischemia–reperfusion.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.