Uniqueness of Regular Tangent Cones for Immersed Stable Hypersurfaces

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Nick Edelen, Paul Minter
{"title":"Uniqueness of Regular Tangent Cones for Immersed Stable Hypersurfaces","authors":"Nick Edelen,&nbsp;Paul Minter","doi":"10.1007/s00205-024-02071-y","DOIUrl":null,"url":null,"abstract":"<div><p>We establish uniqueness and regularity results for tangent cones (at a point or at infinity), with isolated singularities arising from a given immersed stable minimal hypersurface with suitably small (non-immersed) singular set. In particular, our results allow the tangent cone to occur with any integer multiplicity.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02071-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02071-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We establish uniqueness and regularity results for tangent cones (at a point or at infinity), with isolated singularities arising from a given immersed stable minimal hypersurface with suitably small (non-immersed) singular set. In particular, our results allow the tangent cone to occur with any integer multiplicity.

沉入稳定超曲面的正切圆锥的唯一性
我们建立了切锥(在点或无穷远处)的唯一性和正则性结果,其孤立奇点产生于给定的沉浸稳定极小超曲面,具有适当小的(非沉浸)奇点集。特别是,我们的结果允许切锥以任意整数倍率出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信