Asymptotic behavior of laminated beams with Kelvin-Voigt damping

Q2 Mathematics
Victor R. Cabanillas, Teófanes Quispe Méndez
{"title":"Asymptotic behavior of laminated beams with Kelvin-Voigt damping","authors":"Victor R. Cabanillas,&nbsp;Teófanes Quispe Méndez","doi":"10.1007/s11565-024-00559-9","DOIUrl":null,"url":null,"abstract":"<div><p>This work considers a one-dimensional system consisting of two identical Timoshenko beams. The model considers that an adhesive layer of small thickness joins the two surfaces, thus producing an interfacial slip under homogeneous mixed Neumann-Dirichlet-Dirichlet boundary conditions. We introduce a Kelvin-Voigt type damping into the rotation equation, and we study the well-posedness of the problem and the asymptotic behavior of the solutions using techniques from the semigroup theory of linear operators and the frequency domain method. When the wave’s propagation speeds are equal in both beams, we show that the Kelvin-Voigt dissipative term acting on the rotation equation is sufficient to obtain the exponential decay of the solutions while maintaining the structural dissipation characteristic of the model. When these propagation speeds differ, we show the lack of exponential decay and prove that the solutions decay polynomially with a decay rate of <span>\\(t^{-\\frac{1}{2}}\\)</span>. We prove, finally, that this decay rate is optimal.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00559-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This work considers a one-dimensional system consisting of two identical Timoshenko beams. The model considers that an adhesive layer of small thickness joins the two surfaces, thus producing an interfacial slip under homogeneous mixed Neumann-Dirichlet-Dirichlet boundary conditions. We introduce a Kelvin-Voigt type damping into the rotation equation, and we study the well-posedness of the problem and the asymptotic behavior of the solutions using techniques from the semigroup theory of linear operators and the frequency domain method. When the wave’s propagation speeds are equal in both beams, we show that the Kelvin-Voigt dissipative term acting on the rotation equation is sufficient to obtain the exponential decay of the solutions while maintaining the structural dissipation characteristic of the model. When these propagation speeds differ, we show the lack of exponential decay and prove that the solutions decay polynomially with a decay rate of \(t^{-\frac{1}{2}}\). We prove, finally, that this decay rate is optimal.

具有 Kelvin-Voigt 阻尼的层压梁的渐近行为
本研究考虑了一个由两个完全相同的季莫申科梁组成的一维系统。该模型认为,在两个表面之间有一个厚度很小的粘合层,因此在均质混合诺伊曼-德里赫特-德里赫特边界条件下会产生界面滑移。我们在旋转方程中引入了 Kelvin-Voigt 型阻尼,并利用线性算子的半群理论和频域方法等技术研究了问题的良好求解性和解的渐近行为。当波在两个波束中的传播速度相同时,我们证明作用于旋转方程的开尔文-沃伊特耗散项足以获得解的指数衰减,同时保持模型的结构耗散特性。当这些传播速度不同时,我们显示了指数衰减的缺乏,并证明了解的多项式衰减,衰减率为 \(t^{-\frac{1}{2}}\)。最后,我们证明这个衰减率是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信