Nonlinear Stability of Static Néel Walls in Ferromagnetic Thin Films

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Antonio Capella, Christof Melcher, Lauro Morales, Ramón G. Plaza
{"title":"Nonlinear Stability of Static Néel Walls in Ferromagnetic Thin Films","authors":"Antonio Capella,&nbsp;Christof Melcher,&nbsp;Lauro Morales,&nbsp;Ramón G. Plaza","doi":"10.1007/s00205-024-02074-9","DOIUrl":null,"url":null,"abstract":"<div><p>The paper establishes the nonlinear (orbital) stability of static 180-degree Néel walls in ferromagnetic films under the reduced wave-type dynamics for the in-plane magnetization proposed by Capella et al. (Nonlinearity 20:2519–2537, 2007). The result follows from the spectral analysis of the linearized operator around the Néel wall’s phase, which features a challenging non-local operator. As part of the proof, we show that the non-local linearized operator is a compact perturbation of a suitable non-local linear operator at infinity, a result that is interesting in itself.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02074-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper establishes the nonlinear (orbital) stability of static 180-degree Néel walls in ferromagnetic films under the reduced wave-type dynamics for the in-plane magnetization proposed by Capella et al. (Nonlinearity 20:2519–2537, 2007). The result follows from the spectral analysis of the linearized operator around the Néel wall’s phase, which features a challenging non-local operator. As part of the proof, we show that the non-local linearized operator is a compact perturbation of a suitable non-local linear operator at infinity, a result that is interesting in itself.

铁磁薄膜中静态奈尔壁的非线性稳定性
本文根据 Capella 等人提出的面内磁化还原波型动力学(《非线性》20:2519-2537, 2007 年),确定了铁磁薄膜中静态 180 度内尔墙的非线性(轨道)稳定性。这一结果源于对内尔墙相位周围线性化算子的谱分析,该算子具有挑战性的非局部算子特征。作为证明的一部分,我们证明了非局部线性化算子是一个合适的非局部线性算子在无限远处的紧凑扰动,这一结果本身就很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信