Level Curve Tracking via Robust RL-Guided Model Predictive Control

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zhuo Li;Yunlong Guo;Gang Wang;Wei Chen
{"title":"Level Curve Tracking via Robust RL-Guided Model Predictive Control","authors":"Zhuo Li;Yunlong Guo;Gang Wang;Wei Chen","doi":"10.1109/JAS.2024.124350","DOIUrl":null,"url":null,"abstract":"Dear Editor, This letter investigates the level curve tracking problem of unknown scalar fields using an unmanned aerial vehicle (UAV) and presents a robust reinforcement learning (RL)-guided model predictive control (MPC) scheme for the UAV. Specifically, we formulate the MPC trajectory tracking problem, wherein an RL-based trajectory planning algorithm provides the reference trajectory to guide the UAV towards the desired concentration. Notably, we introduce random noise during the training of the planning policy in the RL algorithm, demonstrating its efficacy in enhancing policy robustness. The proposed RL-guided MPC scheme's effectiveness is validated through simulations.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 12","pages":"2512-2514"},"PeriodicalIF":15.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759609/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dear Editor, This letter investigates the level curve tracking problem of unknown scalar fields using an unmanned aerial vehicle (UAV) and presents a robust reinforcement learning (RL)-guided model predictive control (MPC) scheme for the UAV. Specifically, we formulate the MPC trajectory tracking problem, wherein an RL-based trajectory planning algorithm provides the reference trajectory to guide the UAV towards the desired concentration. Notably, we introduce random noise during the training of the planning policy in the RL algorithm, demonstrating its efficacy in enhancing policy robustness. The proposed RL-guided MPC scheme's effectiveness is validated through simulations.
通过鲁棒 RL 引导的模型预测控制实现电平曲线跟踪
亲爱的编辑,这封信研究了使用无人飞行器(UAV)追踪未知标量场的水平曲线问题,并为无人飞行器提出了一种鲁棒强化学习(RL)引导的模型预测控制(MPC)方案。具体来说,我们提出了 MPC 轨迹跟踪问题,其中基于 RL 的轨迹规划算法提供了参考轨迹,以引导无人飞行器飞向所需浓度。值得注意的是,我们在 RL 算法的规划策略训练过程中引入了随机噪声,证明了其在增强策略鲁棒性方面的功效。通过模拟验证了所提出的 RL 引导 MPC 方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信