{"title":"Cas-FNE: Cascaded Face Normal Estimation","authors":"Meng Wang;Jiawan Zhang;Jiayi Ma;Xiaojie Guo","doi":"10.1109/JAS.2024.124899","DOIUrl":null,"url":null,"abstract":"Capturing high-fidelity normals from single face images plays a core role in numerous computer vision and graphics applications. Though significant progress has been made in recent years, how to effectively and efficiently explore normal priors remains challenging. Most existing approaches depend on the development of intricate network architectures and complex calculations for in-the-wild face images. To overcome the above issue, we propose a simple yet effective cascaded neural network, called Cas-Fne, which progressively boosts the quality of predicted normals with marginal model parameters and computational cost. Meanwhile, it can mitigate the imbalance issue between training data and real-world face images due to the progressive refinement mechanism, and thus boost the generalization ability of the model. Specifically, in the training phase, our model relies solely on a small amount of labeled data. The earlier prediction serves as guidance for following refinement. In addition, our shared-parameter cascaded block employs a recurrent mechanism, allowing it to be applied multiple times for optimization without increasing network parameters. Quantitative and qualitative evaluations on benchmark datasets are conducted to show that our Cas-FNE can faithfully maintain facial details and reveal its superiority over state-of-the-art methods. The code is available at https://github.com/AutoHDR/CasFNE.git.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 12","pages":"2423-2434"},"PeriodicalIF":15.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759598/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Capturing high-fidelity normals from single face images plays a core role in numerous computer vision and graphics applications. Though significant progress has been made in recent years, how to effectively and efficiently explore normal priors remains challenging. Most existing approaches depend on the development of intricate network architectures and complex calculations for in-the-wild face images. To overcome the above issue, we propose a simple yet effective cascaded neural network, called Cas-Fne, which progressively boosts the quality of predicted normals with marginal model parameters and computational cost. Meanwhile, it can mitigate the imbalance issue between training data and real-world face images due to the progressive refinement mechanism, and thus boost the generalization ability of the model. Specifically, in the training phase, our model relies solely on a small amount of labeled data. The earlier prediction serves as guidance for following refinement. In addition, our shared-parameter cascaded block employs a recurrent mechanism, allowing it to be applied multiple times for optimization without increasing network parameters. Quantitative and qualitative evaluations on benchmark datasets are conducted to show that our Cas-FNE can faithfully maintain facial details and reveal its superiority over state-of-the-art methods. The code is available at https://github.com/AutoHDR/CasFNE.git.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.