{"title":"Multi-View Dynamic Kernelized Evidential Clustering","authors":"Jinyi Xu;Zuowei Zhang;Ze Lin;Yixiang Chen;Weiping Ding","doi":"10.1109/JAS.2024.124608","DOIUrl":null,"url":null,"abstract":"It is challenging to cluster multi-view data in which the clusters have overlapping areas. Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters, increasing clustering errors. Our solution, the multi-view dynamic kernelized evidential clustering method (MvDKE), addresses this by assigning these objects to meta-clusters, a union of several related singleton clusters, effectively capturing the local imprecision in overlapping areas. MvDKE offers two main advantages: firstly, it significantly reduces computational complexity through a dynamic framework for evidential clustering, and secondly, it adeptly handles non-spherical data using kernel techniques within its objective function. Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data, achieving better efficiency and outperforming existing methods in overall performance.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 12","pages":"2435-2450"},"PeriodicalIF":15.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759595/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
It is challenging to cluster multi-view data in which the clusters have overlapping areas. Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters, increasing clustering errors. Our solution, the multi-view dynamic kernelized evidential clustering method (MvDKE), addresses this by assigning these objects to meta-clusters, a union of several related singleton clusters, effectively capturing the local imprecision in overlapping areas. MvDKE offers two main advantages: firstly, it significantly reduces computational complexity through a dynamic framework for evidential clustering, and secondly, it adeptly handles non-spherical data using kernel techniques within its objective function. Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data, achieving better efficiency and outperforming existing methods in overall performance.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.