Multi-View Dynamic Kernelized Evidential Clustering

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jinyi Xu;Zuowei Zhang;Ze Lin;Yixiang Chen;Weiping Ding
{"title":"Multi-View Dynamic Kernelized Evidential Clustering","authors":"Jinyi Xu;Zuowei Zhang;Ze Lin;Yixiang Chen;Weiping Ding","doi":"10.1109/JAS.2024.124608","DOIUrl":null,"url":null,"abstract":"It is challenging to cluster multi-view data in which the clusters have overlapping areas. Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters, increasing clustering errors. Our solution, the multi-view dynamic kernelized evidential clustering method (MvDKE), addresses this by assigning these objects to meta-clusters, a union of several related singleton clusters, effectively capturing the local imprecision in overlapping areas. MvDKE offers two main advantages: firstly, it significantly reduces computational complexity through a dynamic framework for evidential clustering, and secondly, it adeptly handles non-spherical data using kernel techniques within its objective function. Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data, achieving better efficiency and outperforming existing methods in overall performance.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 12","pages":"2435-2450"},"PeriodicalIF":15.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759595/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

It is challenging to cluster multi-view data in which the clusters have overlapping areas. Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters, increasing clustering errors. Our solution, the multi-view dynamic kernelized evidential clustering method (MvDKE), addresses this by assigning these objects to meta-clusters, a union of several related singleton clusters, effectively capturing the local imprecision in overlapping areas. MvDKE offers two main advantages: firstly, it significantly reduces computational complexity through a dynamic framework for evidential clustering, and secondly, it adeptly handles non-spherical data using kernel techniques within its objective function. Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data, achieving better efficiency and outperforming existing methods in overall performance.
多视角动态核化证据聚类
对多视图数据进行聚类具有挑战性,因为其中的聚类区域存在重叠。现有的多视图聚类方法通常会将重叠区域中无法区分的对象强行归入单个聚类,从而造成分类错误,增加聚类误差。我们的解决方案--多视图动态核化证据聚类方法(MvDKE)--通过将这些对象分配到元聚类(多个相关单子聚类的联合体)来解决这一问题,从而有效地捕捉重叠区域的局部不精确性。MvDKE 有两大优势:首先,它通过证据聚类的动态框架大大降低了计算复杂度;其次,它在目标函数中使用核技术巧妙地处理了非球形数据。在各种数据集上的实验证实,MvDKE 能够准确表征多视角非球形数据的局部不精确性,效率更高,总体性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信