Compact Wide Upper Stopband Suppression Filtering Antenna for Aerospace Applications

Jiawang Li;Yitong Shi;Lei Xiang
{"title":"Compact Wide Upper Stopband Suppression Filtering Antenna for Aerospace Applications","authors":"Jiawang Li;Yitong Shi;Lei Xiang","doi":"10.1109/JMASS.2024.3445257","DOIUrl":null,"url":null,"abstract":"This article presents a novel wide stopband suppression millimeter wave (mmWave) filtering antenna (filtenna). A three-order resonance substrate integrated waveguide (SIW) topology structure, including a driven patch and a radiation patch, is applied to enhance the bandwidth. In contrast to traditional stacked patch antennas, this design modifies the driven and radiation patches in different shapes. The full mode SIW (FMSIW) cavity is adopted due to its high-quality (high-Q) factor, which effectively improves the antenna’s selectivity. Besides, the generation of main upper band radiation nulls is attributed to the designed FMSIW cavity. Four parasitic vertical dumbbell structures are added to increase the stopband bandwidth. A pair of U-shape slots are etched on the driven patch to generate a lower band radiation null. A polycyclic structure rather than a single radiation patch can generate another lower band radiation null. To reduce the effect of the antenna element on the ground area and increase the isolation between elements, a via array is added around it, which also slightly enhances the sideband suppression of the antenna in the upper sideband. For verification, a filtenna working for the N258 band (24.25–27.5 GHz) is designed, fabricated, and measured. The measured results show that a measured −10-dB impedance bandwidth covering from 24.25 to 29.06 GHz is successfully implemented. The average realized gain can reach 5 dBi, and the lower and upper band suppression can reach more than 30 and 19.1 dB, respectively. Furthermore, the upper stopband achieves wide suppression from 30 to 50 GHz. Overall, this filtenna is a competitive candidate for 5G mmWave applications.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 4","pages":"211-220"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638124/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel wide stopband suppression millimeter wave (mmWave) filtering antenna (filtenna). A three-order resonance substrate integrated waveguide (SIW) topology structure, including a driven patch and a radiation patch, is applied to enhance the bandwidth. In contrast to traditional stacked patch antennas, this design modifies the driven and radiation patches in different shapes. The full mode SIW (FMSIW) cavity is adopted due to its high-quality (high-Q) factor, which effectively improves the antenna’s selectivity. Besides, the generation of main upper band radiation nulls is attributed to the designed FMSIW cavity. Four parasitic vertical dumbbell structures are added to increase the stopband bandwidth. A pair of U-shape slots are etched on the driven patch to generate a lower band radiation null. A polycyclic structure rather than a single radiation patch can generate another lower band radiation null. To reduce the effect of the antenna element on the ground area and increase the isolation between elements, a via array is added around it, which also slightly enhances the sideband suppression of the antenna in the upper sideband. For verification, a filtenna working for the N258 band (24.25–27.5 GHz) is designed, fabricated, and measured. The measured results show that a measured −10-dB impedance bandwidth covering from 24.25 to 29.06 GHz is successfully implemented. The average realized gain can reach 5 dBi, and the lower and upper band suppression can reach more than 30 and 19.1 dB, respectively. Furthermore, the upper stopband achieves wide suppression from 30 to 50 GHz. Overall, this filtenna is a competitive candidate for 5G mmWave applications.
用于航空航天应用的紧凑型宽上止带抑制滤波天线
本文介绍了一种新型宽阻带抑制毫米波(mmWave)滤波天线(filtenna)。它采用三阶谐振基底集成波导(SIW)拓扑结构,包括一个驱动贴片和一个辐射贴片,以增强带宽。与传统的叠层贴片天线相比,这种设计将驱动贴片和辐射贴片改变成了不同的形状。由于全模 SIW(FMSIW)腔具有高质量(高 Q 值)因子,因此被采用,从而有效提高了天线的选择性。此外,主要高频段辐射无效的产生也归功于所设计的 FMSIW 腔体。为增加停带带宽,天线增加了四个寄生垂直哑铃结构。在驱动贴片上蚀刻了一对 U 形槽,以产生低频带辐射空。多环结构而非单一辐射贴片可产生另一个低频带辐射无效。为了减少天线元件对接地面积的影响并增加元件之间的隔离,在其周围增加了一个通孔阵列,这也略微增强了天线在上边带的边带抑制能力。为进行验证,设计、制造并测量了一个适用于 N258 频段(24.25-27.5 GHz)的滤波器。测量结果表明,成功实现了覆盖 24.25 至 29.06 GHz 的 -10 分贝阻抗带宽。平均实现增益可达 5 dBi,下带和上带抑制分别超过 30 dB 和 19.1 dB。此外,上止带实现了 30 至 50 GHz 的宽抑制。总体而言,这种滤波器是 5G 毫米波应用的理想候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信