Bifurcation analysis and exact solutions of the conformable time fractional Symmetric Regularized Long Wave equation

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jing Zhang, Zhen Zheng, Hui Meng, Zenggui Wang
{"title":"Bifurcation analysis and exact solutions of the conformable time fractional Symmetric Regularized Long Wave equation","authors":"Jing Zhang, Zhen Zheng, Hui Meng, Zenggui Wang","doi":"10.1016/j.chaos.2024.115744","DOIUrl":null,"url":null,"abstract":"This paper investigates exact solutions for the conformable time fractional Symmetric Regularized Long Wave equation by applying the bifurcation analysis method and the <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mo>exp</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mi>Φ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>ξ</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>-expansion method. By analyzing the long behaviors of the exact solutions plotted in 3D and 2D figures, we can model weakly nonlinear ion acoustic and space-charge waves. The bifurcation of the equation is analyzed based on the condition where the first integral constant is zero and the second integral constant is not zero. Based on different parameter conditions, many phase portraits and exact solutions including dark soliton, bright soliton, breaking wave, periodic and singular solutions for the equation are obtained. It has been proven that bifurcation method provides a wider range of solutions compared with other methods. Then the <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mo>exp</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mi>Φ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>ξ</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:math>expansion method is utilized to get the more solutions. Next graphical representations are presented that show physical characteristics of the solutions and the significance of the methods for fractional partial differential equations. Finally, we make a comprehensive comparison with other literatures.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115744","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates exact solutions for the conformable time fractional Symmetric Regularized Long Wave equation by applying the bifurcation analysis method and the exp(Φ(ξ))-expansion method. By analyzing the long behaviors of the exact solutions plotted in 3D and 2D figures, we can model weakly nonlinear ion acoustic and space-charge waves. The bifurcation of the equation is analyzed based on the condition where the first integral constant is zero and the second integral constant is not zero. Based on different parameter conditions, many phase portraits and exact solutions including dark soliton, bright soliton, breaking wave, periodic and singular solutions for the equation are obtained. It has been proven that bifurcation method provides a wider range of solutions compared with other methods. Then the exp(Φ(ξ))expansion method is utilized to get the more solutions. Next graphical representations are presented that show physical characteristics of the solutions and the significance of the methods for fractional partial differential equations. Finally, we make a comprehensive comparison with other literatures.
共形时间分数对称正则化长波方程的分岔分析和精确解
本文通过应用分岔分析方法和 exp(-Φ(ξ)) 展开方法,研究了共形时间分数对称正则化长波方程的精确解。通过分析精确解在三维和二维图形中的长行为,我们可以建立弱非线性离子声波和空间电荷波模型。根据第一积分常数为零、第二积分常数不为零的条件,分析了方程的分岔。根据不同的参数条件,得到了方程的许多相位肖像和精确解,包括暗孤子、亮孤子、断裂波、周期解和奇异解。事实证明,与其他方法相比,分岔法能提供更多的解。然后利用 exp(-Φ(ξ))展开法得到更多的解。接下来,我们用图表展示了解的物理特征以及这些方法对分数偏微分方程的意义。最后,我们与其他文献进行了综合比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信