Raul Santiago Piera, M.Angels Carvajal, Jordi Poater, Ibério de P. R. Moreira, Stefan T. Bromley, Mercè Deumal, Jordi Ribas-Ariño
{"title":"Rational Design of Organic Diradicals with Robust High-Spin Ground State Based on Antiaromatic Linkers","authors":"Raul Santiago Piera, M.Angels Carvajal, Jordi Poater, Ibério de P. R. Moreira, Stefan T. Bromley, Mercè Deumal, Jordi Ribas-Ariño","doi":"10.1039/d4sc05225k","DOIUrl":null,"url":null,"abstract":"Fully-organic molecules with high-spin ground states are promising building blocks for new lightweight flexible magnetic materials with potential for emerging technological applications (e.g. spintronics). In this study, we explore the potential of diradicals made of two diphenylmethyl-based open-shell cores covalently linked via different types of pentalene and diazapentalene-based antiaromatic couplers (including dibenzopentalenes and acene-inserted derivatives). Accurate electronic structure calculations have been employed to target molecular orbital topologies that favor high-spin configurations, leading to the identification of diradicals displaying robust triplet ground states. These candidates exhibit singlet-triplet energy gaps that are up to ten times the thermal energy at room temperature. These substantial gaps emerge from strong interactions between the π-systems of the open-shell centers and the antiaromatic coupler. These interactions not only result in high spin states but are also found to lead to an enhanced stability of the diradicals by drastically dampening their inherent antiaromatic character as compared to the bare couplers and promoting a high degree of spin density delocalization. These findings highlight the potential of pentalene-based diradicals as building blocks for developing new advanced fully organic magnetic materials.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"6 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc05225k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fully-organic molecules with high-spin ground states are promising building blocks for new lightweight flexible magnetic materials with potential for emerging technological applications (e.g. spintronics). In this study, we explore the potential of diradicals made of two diphenylmethyl-based open-shell cores covalently linked via different types of pentalene and diazapentalene-based antiaromatic couplers (including dibenzopentalenes and acene-inserted derivatives). Accurate electronic structure calculations have been employed to target molecular orbital topologies that favor high-spin configurations, leading to the identification of diradicals displaying robust triplet ground states. These candidates exhibit singlet-triplet energy gaps that are up to ten times the thermal energy at room temperature. These substantial gaps emerge from strong interactions between the π-systems of the open-shell centers and the antiaromatic coupler. These interactions not only result in high spin states but are also found to lead to an enhanced stability of the diradicals by drastically dampening their inherent antiaromatic character as compared to the bare couplers and promoting a high degree of spin density delocalization. These findings highlight the potential of pentalene-based diradicals as building blocks for developing new advanced fully organic magnetic materials.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.