DNA-Regulated Multi-Protein Complement Control

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yinglun Ma, Peter H. Winegar, C. Adrian Figg, Namrata Ramani, Alex J. Anderson, Kathleen Ngo, John F. Ahrens, Nikhil S. Chellam, Young Jun Kim, Chad A. Mirkin
{"title":"DNA-Regulated Multi-Protein Complement Control","authors":"Yinglun Ma, Peter H. Winegar, C. Adrian Figg, Namrata Ramani, Alex J. Anderson, Kathleen Ngo, John F. Ahrens, Nikhil S. Chellam, Young Jun Kim, Chad A. Mirkin","doi":"10.1021/jacs.4c11315","DOIUrl":null,"url":null,"abstract":"In nature, the interactions between proteins and their complements/substrates can dictate complex functions. Herein, we explore how DNA on nucleic acid modified proteins can be used as scaffolds to deliberately control interactions with a peptide complement (by adjusting length, sequence, and rigidity). As model systems, split GFPs were covalently connected through DNA scaffolds (36–58 bp). Increasing the length or decreasing the rigidity of the DNA scaffold (through removal of the duplex) increases the extent of intramolecular protein binding (up to 7.5-fold) between these GFP fragments. Independent and dynamic control over functional outputs can also be regulated by DNA hybridization; a multi-protein (split CFP and YFP) architecture was synthesized and characterized by fluorescence. This ternary construct shows that DNA displacement strands in different stoichiometric ratios can be used deliberately to regulate competitive binding between two unique sets of proteins. These studies establish a foundation for creating new classes of biological machinery based upon the concept of DNA-regulated multi-protein complement control.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"129 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11315","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In nature, the interactions between proteins and their complements/substrates can dictate complex functions. Herein, we explore how DNA on nucleic acid modified proteins can be used as scaffolds to deliberately control interactions with a peptide complement (by adjusting length, sequence, and rigidity). As model systems, split GFPs were covalently connected through DNA scaffolds (36–58 bp). Increasing the length or decreasing the rigidity of the DNA scaffold (through removal of the duplex) increases the extent of intramolecular protein binding (up to 7.5-fold) between these GFP fragments. Independent and dynamic control over functional outputs can also be regulated by DNA hybridization; a multi-protein (split CFP and YFP) architecture was synthesized and characterized by fluorescence. This ternary construct shows that DNA displacement strands in different stoichiometric ratios can be used deliberately to regulate competitive binding between two unique sets of proteins. These studies establish a foundation for creating new classes of biological machinery based upon the concept of DNA-regulated multi-protein complement control.

Abstract Image

DNA 调节的多蛋白补体控制
在自然界中,蛋白质与其补体/底物之间的相互作用可决定复杂的功能。在此,我们探讨了如何利用核酸修饰蛋白上的 DNA 作为支架,有意控制与肽补体的相互作用(通过调整长度、序列和硬度)。作为模型系统,分裂的 GFP 通过 DNA 支架(36-58 bp)共价连接。增加 DNA 支架的长度或降低其硬度(通过去除双链)可增加这些 GFP 片段之间的分子内蛋白质结合程度(最多 7.5 倍)。对功能输出的独立和动态控制也可以通过 DNA 杂交来调节;我们合成了一种多蛋白(CFP 和 YFP 分裂)结构,并用荧光对其进行了表征。这种三元结构表明,可以有意识地使用不同化学计量比的 DNA 置换链来调节两组独特蛋白质之间的竞争性结合。这些研究为基于 DNA 调节的多蛋白互补控制概念创建新型生物机制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信