{"title":"Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review","authors":"Stefano Lambiase, Gemma Catolino, Fabio Palomba, Filomena Ferrucci","doi":"10.1145/3704806","DOIUrl":null,"url":null,"abstract":"<jats:italic> Bots </jats:italic> are software systems designed to support users by automating specific processes, tasks, or activities. When these systems implement a conversational component to interact with users, they are also known as <jats:italic> conversational agents </jats:italic> or <jats:italic>chatbots</jats:italic> . Bots—particularly in their conversation-oriented version and AI-powered—have seen increased adoption over time for software development and engineering purposes. Despite their exciting potential, which has been further enhanced by the advent of Generative AI and Large Language Models, bots still face challenges in terms of development and integration into the development cycle, as practitioners report that bots can add difficulties rather than provide improvements. In this work, we aim to provide a taxonomy for characterizing bots, as well as a series of challenges for their adoption in software engineering, accompanied by potential mitigation strategies. To achieve our objectives, we conducted a <jats:italic>multivocal literature review</jats:italic> , examining both research and practitioner literature. Through such an approach, we hope to contribute to both researchers and practitioners by providing (i) a series of future research directions to pursue, (ii) a list of strategies to adopt for improving the use of bots for software engineering purposes, and (iii) fostering technology and knowledge transfer from the research field to practice—one of the primary goals of multivocal literature reviews.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"23 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3704806","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bots are software systems designed to support users by automating specific processes, tasks, or activities. When these systems implement a conversational component to interact with users, they are also known as conversational agents or chatbots . Bots—particularly in their conversation-oriented version and AI-powered—have seen increased adoption over time for software development and engineering purposes. Despite their exciting potential, which has been further enhanced by the advent of Generative AI and Large Language Models, bots still face challenges in terms of development and integration into the development cycle, as practitioners report that bots can add difficulties rather than provide improvements. In this work, we aim to provide a taxonomy for characterizing bots, as well as a series of challenges for their adoption in software engineering, accompanied by potential mitigation strategies. To achieve our objectives, we conducted a multivocal literature review , examining both research and practitioner literature. Through such an approach, we hope to contribute to both researchers and practitioners by providing (i) a series of future research directions to pursue, (ii) a list of strategies to adopt for improving the use of bots for software engineering purposes, and (iii) fostering technology and knowledge transfer from the research field to practice—one of the primary goals of multivocal literature reviews.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.