Collaborative Distributed Machine Learning

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
David Jin, Niclas Kannengießer, Sascha Rank, Ali Sunyaev
{"title":"Collaborative Distributed Machine Learning","authors":"David Jin, Niclas Kannengießer, Sascha Rank, Ali Sunyaev","doi":"10.1145/3704807","DOIUrl":null,"url":null,"abstract":"Various collaborative distributed machine learning (CDML) systems, including federated learning systems and swarm learning systems, with different key traits were developed to leverage resources for the development and use of machine learning (ML) models in a confidentiality-preserving way. To meet use case requirements, suitable CDML systems need to be selected. However, comparison between CDML systems to assess their suitability for use cases is often difficult. To support comparison of CDML systems and introduce scientific and practical audiences to the principal functioning and key traits of CDML systems, this work presents a CDML system conceptualization and CDML archetypes.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"14 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3704807","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Various collaborative distributed machine learning (CDML) systems, including federated learning systems and swarm learning systems, with different key traits were developed to leverage resources for the development and use of machine learning (ML) models in a confidentiality-preserving way. To meet use case requirements, suitable CDML systems need to be selected. However, comparison between CDML systems to assess their suitability for use cases is often difficult. To support comparison of CDML systems and introduce scientific and practical audiences to the principal functioning and key traits of CDML systems, this work presents a CDML system conceptualization and CDML archetypes.
协作式分布机器学习
为了以保密方式利用资源开发和使用机器学习(ML)模型,开发了各种具有不同关键特征的协作分布式机器学习(CDML)系统,包括联合学习系统和群学习系统。为满足用例要求,需要选择合适的 CDML 系统。然而,对 CDML 系统进行比较以评估其是否适合用例往往很困难。为了支持对 CDML 系统进行比较,并向科学界和实际受众介绍 CDML 系统的主要功能和关键特征,这项工作提出了 CDML 系统概念化和 CDML 原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信