Automated seismic event detection considering faulty data interference using deep learning and Bayesian fusion

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhiyi Tang, Jiaxing Guo, Yinhao Wang, Wei Xu, Yuequan Bao, Jingran He, Youqi Zhang
{"title":"Automated seismic event detection considering faulty data interference using deep learning and Bayesian fusion","authors":"Zhiyi Tang, Jiaxing Guo, Yinhao Wang, Wei Xu, Yuequan Bao, Jingran He, Youqi Zhang","doi":"10.1111/mice.13377","DOIUrl":null,"url":null,"abstract":"Structural health monitoring (SHM) aims to assess civil infrastructures' performance and ensure safety. Automated detection of in situ events of interest, such as earthquakes, from extensive continuous monitoring data, is important to ensure the timeliness of subsequent data analysis. To overcome the poor timeliness of manual identification and the inconsistency of sensors, this paper proposes an automated seismic event detection procedure with interpretability and robustness. The sensor-wise raw time series is transformed into image data, enhancing the separability of classification while endowing with visual understandability. Vision Transformers (ViTs) and Residual Networks (ResNets) aided by a heat map–based visual interpretation technique are used for image classification. Multitype faulty data that could disturb the seismic event detection are considered in the classification. Then, divergent results from multiple sensors are fused by Bayesian fusion, outputting a consistent seismic detection result. A real-world monitoring data set of four seismic responses of a pair of long-span bridges is used for method validation. At the classification stage, ResNet 34 achieved the best accuracy of over 90% with minimal training cost. After Bayesian fusion, globally consistent and accurate seismic detection results can be obtained using a ResNet or ViT. The proposed approach effectively localizes seismic events within multisource, multifault monitoring data, achieving automated and consistent seismic event detection.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"73 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13377","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Structural health monitoring (SHM) aims to assess civil infrastructures' performance and ensure safety. Automated detection of in situ events of interest, such as earthquakes, from extensive continuous monitoring data, is important to ensure the timeliness of subsequent data analysis. To overcome the poor timeliness of manual identification and the inconsistency of sensors, this paper proposes an automated seismic event detection procedure with interpretability and robustness. The sensor-wise raw time series is transformed into image data, enhancing the separability of classification while endowing with visual understandability. Vision Transformers (ViTs) and Residual Networks (ResNets) aided by a heat map–based visual interpretation technique are used for image classification. Multitype faulty data that could disturb the seismic event detection are considered in the classification. Then, divergent results from multiple sensors are fused by Bayesian fusion, outputting a consistent seismic detection result. A real-world monitoring data set of four seismic responses of a pair of long-span bridges is used for method validation. At the classification stage, ResNet 34 achieved the best accuracy of over 90% with minimal training cost. After Bayesian fusion, globally consistent and accurate seismic detection results can be obtained using a ResNet or ViT. The proposed approach effectively localizes seismic events within multisource, multifault monitoring data, achieving automated and consistent seismic event detection.
利用深度学习和贝叶斯融合技术自动检测地震事件(考虑到错误数据干扰
结构健康监测(SHM)旨在评估民用基础设施的性能并确保安全。从大量连续监测数据中自动检测地震等现场事件,对于确保后续数据分析的及时性非常重要。为了克服人工识别的不及时性和传感器的不一致性,本文提出了一种具有可解释性和鲁棒性的地震事件自动检测程序。将传感器的原始时间序列转换为图像数据,增强了分类的可分离性,同时赋予了视觉上的可理解性。视觉转换器(ViTs)和残差网络(ResNets)在基于热图的视觉解读技术的辅助下用于图像分类。在分类过程中,考虑了可能干扰地震事件检测的多种错误数据。然后,通过贝叶斯融合法融合来自多个传感器的不同结果,输出一致的地震检测结果。实际监测数据集包括一对大跨度桥梁的四次地震响应,用于方法验证。在分类阶段,ResNet 34 以最小的训练成本达到了 90% 以上的最佳准确率。贝叶斯融合后,使用 ResNet 或 ViT 可以获得全局一致且准确的地震检测结果。所提出的方法能有效定位多源、多断层监测数据中的地震事件,实现自动、一致的地震事件检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信