Micro-DeMix: a mixture beta-multinomial model for investigating the heterogeneity of the stool microbiome compositions.

Ruoqian Liu, Yue Wang, Dan Cheng
{"title":"Micro-DeMix: a mixture beta-multinomial model for investigating the heterogeneity of the stool microbiome compositions.","authors":"Ruoqian Liu, Yue Wang, Dan Cheng","doi":"10.1093/bioinformatics/btae667","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Extensive research has uncovered the critical role of the human gut microbiome in various aspects of health, including metabolism, nutrition, physiology, and immune function. Fecal microbiota is often used as a proxy for understanding the gut microbiome, but it represents an aggregate view, overlooking spatial variations across different gastrointestinal (GI) locations. Emerging studies with spatial microbiome data collected from specific GI regions offer a unique opportunity to better understand the spatial composition of the stool microbiome.</p><p><strong>Results: </strong>We introduce Micro-DeMix, a mixture beta-multinomial model that deconvolutes the fecal microbiome at the compositional level by integrating stool samples with spatial microbiome data. Micro-DeMix facilitates the comparison of microbial compositions across different GI regions within the stool microbiome through a hypothesis-testing framework. We demonstrate the effectiveness and efficiency of Micro-DeMix using multiple simulated data sets and the Inflammatory Bowel Disease (IBD) data from the NIH Integrative Human Microbiome Project.</p><p><strong>Availability and implementation: </strong>The R package is available at https://github.com/liuruoqian/MicroDemix.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Extensive research has uncovered the critical role of the human gut microbiome in various aspects of health, including metabolism, nutrition, physiology, and immune function. Fecal microbiota is often used as a proxy for understanding the gut microbiome, but it represents an aggregate view, overlooking spatial variations across different gastrointestinal (GI) locations. Emerging studies with spatial microbiome data collected from specific GI regions offer a unique opportunity to better understand the spatial composition of the stool microbiome.

Results: We introduce Micro-DeMix, a mixture beta-multinomial model that deconvolutes the fecal microbiome at the compositional level by integrating stool samples with spatial microbiome data. Micro-DeMix facilitates the comparison of microbial compositions across different GI regions within the stool microbiome through a hypothesis-testing framework. We demonstrate the effectiveness and efficiency of Micro-DeMix using multiple simulated data sets and the Inflammatory Bowel Disease (IBD) data from the NIH Integrative Human Microbiome Project.

Availability and implementation: The R package is available at https://github.com/liuruoqian/MicroDemix.

Supplementary information: Supplementary data are available at Bioinformatics online.

Micro-DeMix:用于研究粪便微生物组组成异质性的β-多项式混合模型。
研究动机广泛的研究揭示了人类肠道微生物群在新陈代谢、营养、生理和免疫功能等各方面健康中的关键作用。粪便微生物群通常被用作了解肠道微生物群的替代物,但它代表了一种总体观点,忽略了不同胃肠道(GI)部位的空间变化。从特定胃肠道区域收集空间微生物组数据的新兴研究为更好地了解粪便微生物组的空间组成提供了一个独特的机会:结果:我们引入了 Micro-DeMix,这是一个混合 beta 多叉模型,通过整合粪便样本和空间微生物组数据,在组成水平上解卷粪便微生物组。Micro-DeMix 通过一个假设检验框架,有助于比较粪便微生物组中不同消化道区域的微生物组成。我们使用多个模拟数据集和来自美国国立卫生研究院人类微生物组整合项目的炎症性肠病(IBD)数据展示了 Micro-DeMix 的有效性和效率:R 软件包可从 https://github.com/liuruoqian/MicroDemix.Supplementary 信息中获取:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信