Analysis of chi angle distributions in free amino acids via multiplet fitting of proton scalar couplings.

Q3 Physics and Astronomy
Magnetic resonance (Gottingen, Germany) Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI:10.5194/mr-5-103-2024
Nabiha R Syed, Nafisa B Masud, Colin A Smith
{"title":"Analysis of chi angle distributions in free amino acids via multiplet fitting of proton scalar couplings.","authors":"Nabiha R Syed, Nafisa B Masud, Colin A Smith","doi":"10.5194/mr-5-103-2024","DOIUrl":null,"url":null,"abstract":"<p><p>Scalar couplings are a fundamental aspect of nuclear magnetic resonance (NMR) experiments and provide rich information about electron-mediated interactions between nuclei. <sup>3</sup> <math><mrow><mi>J</mi></mrow> </math> couplings are particularly useful for determining molecular structure through the Karplus relationship, a mathematical formula used for calculating <sup>3</sup> <math><mrow><mi>J</mi></mrow> </math> coupling constants from dihedral angles. In small molecules, scalar couplings are often determined through analysis of one-dimensional proton spectra. Larger proteins have typically required specialized multidimensional pulse programs designed to overcome spectral crowding and multiplet complexity. Here, we present a generalized framework for fitting scalar couplings with arbitrarily complex multiplet patterns using a weak-coupling model. The method is implemented in FitNMR and applicable to one-dimensional, two-dimensional, and three-dimensional NMR spectra. To gain insight into the proton-proton coupling patterns present in protein side chains, we analyze a set of free amino acid one-dimensional spectra. We show that the weak-coupling assumption is largely sufficient for fitting the majority of resonances, although there are notable exceptions. To enable structural interpretation of all couplings, we extend generalized and self-consistent Karplus equation parameterizations to all <math><mi>χ</mi></math> angles. An enhanced model of side-chain motion incorporating rotamer statistics from the Protein Data Bank (PDB) is developed. Even without stereospecific assignments of the beta hydrogens, we find that two couplings are sufficient to exclude a single-rotamer model for all amino acids except proline. While most free amino acids show rotameric populations consistent with crystal structure statistics, beta-branched valine and isoleucine deviate substantially.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":"5 2","pages":"103-120"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-5-103-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Scalar couplings are a fundamental aspect of nuclear magnetic resonance (NMR) experiments and provide rich information about electron-mediated interactions between nuclei. 3 J couplings are particularly useful for determining molecular structure through the Karplus relationship, a mathematical formula used for calculating 3 J coupling constants from dihedral angles. In small molecules, scalar couplings are often determined through analysis of one-dimensional proton spectra. Larger proteins have typically required specialized multidimensional pulse programs designed to overcome spectral crowding and multiplet complexity. Here, we present a generalized framework for fitting scalar couplings with arbitrarily complex multiplet patterns using a weak-coupling model. The method is implemented in FitNMR and applicable to one-dimensional, two-dimensional, and three-dimensional NMR spectra. To gain insight into the proton-proton coupling patterns present in protein side chains, we analyze a set of free amino acid one-dimensional spectra. We show that the weak-coupling assumption is largely sufficient for fitting the majority of resonances, although there are notable exceptions. To enable structural interpretation of all couplings, we extend generalized and self-consistent Karplus equation parameterizations to all χ angles. An enhanced model of side-chain motion incorporating rotamer statistics from the Protein Data Bank (PDB) is developed. Even without stereospecific assignments of the beta hydrogens, we find that two couplings are sufficient to exclude a single-rotamer model for all amino acids except proline. While most free amino acids show rotameric populations consistent with crystal structure statistics, beta-branched valine and isoleucine deviate substantially.

通过质子标量耦合的多重拟合分析游离氨基酸的气角分布。
标量耦合是核磁共振(NMR)实验的一个基本方面,它提供了有关原子核之间电子介导的相互作用的丰富信息。3 J 耦合对于通过卡普拉斯关系确定分子结构特别有用,卡普拉斯关系是一个数学公式,用于根据二面角计算 3 J 耦合常数。在小分子中,标量耦合通常通过分析一维质子光谱来确定。较大的蛋白质通常需要专门的多维脉冲程序,以克服光谱拥挤和多重复杂性。在此,我们提出了一个通用框架,利用弱耦合模型拟合具有任意复杂多重子模式的标量耦合。该方法在 FitNMR 中实现,适用于一维、二维和三维 NMR 光谱。为了深入了解蛋白质侧链中的质子-质子耦合模式,我们分析了一组游离氨基酸一维光谱。我们发现,弱耦合假设在很大程度上足以拟合大多数共振,但也有明显的例外。为了对所有耦合进行结构解释,我们将广义的自洽卡普拉斯方程参数化扩展到所有 χ 角。结合蛋白质数据库(PDB)中的转子统计信息,我们建立了一个增强的侧链运动模型。我们发现,即使没有贝它氢的立体特异性分配,两个耦合也足以排除除脯氨酸以外的所有氨基酸的单旋转体模型。虽然大多数游离氨基酸都显示出与晶体结构统计数据一致的旋转体群,但β-支链缬氨酸和异亮氨酸却有很大偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信