{"title":"Sensitivity analysis of colored-noise-driven interacting particle systems.","authors":"Josselin Garnier, Harry L F Ip, Laurent Mertz","doi":"10.1103/PhysRevE.110.044119","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an efficient sensitivity analysis method for a wide class of colored-noise-driven interacting particle systems (IPSs). Our method is based on unperturbed simulations and significantly extends the Malliavin weight sampling method proposed by Szamel [Europhys. Lett. 117, 50010 (2017)0295-507510.1209/0295-5075/117/50010] for evaluating sensitivities such as linear response functions of IPSs driven by simple Ornstein-Uhlenbeck processes. We show that the sensitivity index depends not only on two effective parameters that characterize the variance and correlation time of the noise, but also on the noise spectrum. In the case of a single particle in a harmonic potential, we obtain exact analytical formulas for two types of linear response functions. By applying our method to a system of many particles interacting via a repulsive screened Coulomb potential, we compute the mobility and effective temperature of the system. Our results show that the system dynamics depend, in a nontrivial way, on the noise spectrum.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044119"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044119","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an efficient sensitivity analysis method for a wide class of colored-noise-driven interacting particle systems (IPSs). Our method is based on unperturbed simulations and significantly extends the Malliavin weight sampling method proposed by Szamel [Europhys. Lett. 117, 50010 (2017)0295-507510.1209/0295-5075/117/50010] for evaluating sensitivities such as linear response functions of IPSs driven by simple Ornstein-Uhlenbeck processes. We show that the sensitivity index depends not only on two effective parameters that characterize the variance and correlation time of the noise, but also on the noise spectrum. In the case of a single particle in a harmonic potential, we obtain exact analytical formulas for two types of linear response functions. By applying our method to a system of many particles interacting via a repulsive screened Coulomb potential, we compute the mobility and effective temperature of the system. Our results show that the system dynamics depend, in a nontrivial way, on the noise spectrum.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.