Rényi entanglement entropy of a spin chain with generative neural networks.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Piotr Białas, Piotr Korcyl, Tomasz Stebel, Dawid Zapolski
{"title":"Rényi entanglement entropy of a spin chain with generative neural networks.","authors":"Piotr Białas, Piotr Korcyl, Tomasz Stebel, Dawid Zapolski","doi":"10.1103/PhysRevE.110.044116","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a method to estimate Rényi entanglement entropy of a spin system which is based on the replica trick and generative neural networks with explicit probability estimation. It can be extended to any spin system or lattice field theory. We demonstrate our method on a one-dimensional quantum Ising spin chain. As the generative model, we use a hierarchy of autoregressive networks, allowing us to simulate up to 32 spins. We calculate the second Rényi entropy and its derivative and cross-check our results with the numerical evaluation of entropy and results available in the literature.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044116"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a method to estimate Rényi entanglement entropy of a spin system which is based on the replica trick and generative neural networks with explicit probability estimation. It can be extended to any spin system or lattice field theory. We demonstrate our method on a one-dimensional quantum Ising spin chain. As the generative model, we use a hierarchy of autoregressive networks, allowing us to simulate up to 32 spins. We calculate the second Rényi entropy and its derivative and cross-check our results with the numerical evaluation of entropy and results available in the literature.

具有生成神经网络的自旋链的雷尼纠缠熵。
我们描述了一种估算自旋系统雷尼纠缠熵的方法,它基于复制技巧和显式概率估算的生成神经网络。它可以扩展到任何自旋系统或晶格场论。我们在一维量子伊辛自旋链上演示了我们的方法。作为生成模型,我们使用了自回归网络的层次结构,从而可以模拟多达 32 个自旋。我们计算了第二雷尼熵及其导数,并将我们的结果与熵的数值评估和文献中的结果进行了交叉检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信