Multiphase field model of cells on a substrate: From three dimensional to two dimensional.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Michael Chiang, Austin Hopkins, Benjamin Loewe, Davide Marenduzzo, M Cristina Marchetti
{"title":"Multiphase field model of cells on a substrate: From three dimensional to two dimensional.","authors":"Michael Chiang, Austin Hopkins, Benjamin Loewe, Davide Marenduzzo, M Cristina Marchetti","doi":"10.1103/PhysRevE.110.044403","DOIUrl":null,"url":null,"abstract":"<p><p>Multiphase field models have emerged as an important computational tool for understanding biological tissue while resolving single-cell properties. While they have successfully reproduced many experimentally observed behaviors of living tissue, the theoretical underpinnings have not been fully explored. We show that a two-dimensional version of the model, which is commonly employed to study tissue monolayers, can be derived from a three-dimensional version in the presence of a substrate. We also show how viscous forces, which arise from friction between different cells, can be included in the model. Finally, we numerically simulate a tissue monolayer and find that intercellular friction tends to solidify the tissue.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044403"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044403","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiphase field models have emerged as an important computational tool for understanding biological tissue while resolving single-cell properties. While they have successfully reproduced many experimentally observed behaviors of living tissue, the theoretical underpinnings have not been fully explored. We show that a two-dimensional version of the model, which is commonly employed to study tissue monolayers, can be derived from a three-dimensional version in the presence of a substrate. We also show how viscous forces, which arise from friction between different cells, can be included in the model. Finally, we numerically simulate a tissue monolayer and find that intercellular friction tends to solidify the tissue.

基底上细胞的多相场模型:从三维到二维
多相场模型已成为了解生物组织同时解析单细胞特性的重要计算工具。虽然多相场模型成功再现了许多实验观察到的活体组织行为,但其理论基础尚未得到充分探索。我们的研究表明,通常用于研究组织单层的二维模型可以在存在基质的情况下从三维模型中推导出来。我们还展示了如何将不同细胞间摩擦产生的粘性力纳入模型。最后,我们对组织单层进行了数值模拟,发现细胞间的摩擦会使组织凝固。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信