Grégoire Le Lay, Sarah Layani, Adrian Daerr, Michael Berhanu, Rémy Dolbeault, Till Person, Hugo Roussille, Nicolas Taberlet
{"title":"Magnetic levitation in the field of a rotating dipole.","authors":"Grégoire Le Lay, Sarah Layani, Adrian Daerr, Michael Berhanu, Rémy Dolbeault, Till Person, Hugo Roussille, Nicolas Taberlet","doi":"10.1103/PhysRevE.110.045003","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that two permanent magnets of fixed orientation will either always repel or attract one another regardless of the distance between them. However, if one magnet is rotated at sufficient speed, a stable position at a given equilibrium distance can exist for a second free magnet. The equilibrium is produced by magnetic forces alone, which are strong enough to maintain a levitating state under gravity. We show that a stable levitation can be obtained when the rotating magnet is tilted from the rotation axis, with no offset in its position. In this regime, the levitating magnet remains centered and its spinning rate remains negligible, while its magnetic moment precesses in synchronization with the driving magnet. We provide a physical explanation of the levitation through a model relying on static dipolar interactions between the two magnets and present experimental results which validate the proposed theory.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-2","pages":"045003"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.045003","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that two permanent magnets of fixed orientation will either always repel or attract one another regardless of the distance between them. However, if one magnet is rotated at sufficient speed, a stable position at a given equilibrium distance can exist for a second free magnet. The equilibrium is produced by magnetic forces alone, which are strong enough to maintain a levitating state under gravity. We show that a stable levitation can be obtained when the rotating magnet is tilted from the rotation axis, with no offset in its position. In this regime, the levitating magnet remains centered and its spinning rate remains negligible, while its magnetic moment precesses in synchronization with the driving magnet. We provide a physical explanation of the levitation through a model relying on static dipolar interactions between the two magnets and present experimental results which validate the proposed theory.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.