Melvin Dix, Thomas Lilienkamp, Stefan Luther, Ulrich Parlitz
{"title":"Influence of conduction heterogeneities on transient spatiotemporal chaos in cardiac excitable media.","authors":"Melvin Dix, Thomas Lilienkamp, Stefan Luther, Ulrich Parlitz","doi":"10.1103/PhysRevE.110.044207","DOIUrl":null,"url":null,"abstract":"<p><p>Life-threatening cardiac arrhythmias such as ventricular fibrillation are often based on chaotic spiral or scroll wave dynamics which can be self-terminating. In this work, we investigate the influence of conduction heterogeneities on the duration of such chaotic transients in generic models of excitable cardiac media. We observe that low and medium densities of heterogeneities extend the average transient lifetime, while at high densities very long transients, potentially persistent chaos, and periodic attractors occur.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044207"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044207","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Life-threatening cardiac arrhythmias such as ventricular fibrillation are often based on chaotic spiral or scroll wave dynamics which can be self-terminating. In this work, we investigate the influence of conduction heterogeneities on the duration of such chaotic transients in generic models of excitable cardiac media. We observe that low and medium densities of heterogeneities extend the average transient lifetime, while at high densities very long transients, potentially persistent chaos, and periodic attractors occur.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.