Turbulent cascade arrests and the formation of intermediate-scale condensates.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Kolluru Venkata Kiran, Dario Vincenzi, Rahul Pandit
{"title":"Turbulent cascade arrests and the formation of intermediate-scale condensates.","authors":"Kolluru Venkata Kiran, Dario Vincenzi, Rahul Pandit","doi":"10.1103/PhysRevE.110.L043101","DOIUrl":null,"url":null,"abstract":"<p><p>Energy cascades lie at the heart of the dynamics of turbulent flows. In a recent study of turbulence in fluids with odd viscosity X. M. de Wit et al. [Nature (London) 627, 515 (2024)0028-083610.1038/s41586-024-07074-z], the two dimensionalization of the flow at small scales leads to the arrest of the energy cascade and selection of an intermediate scale, between the forcing and the viscous scales. To demonstrate the generality of the phenomenon and its existence for a wide class of turbulent systems, we study a shell model that is carefully constructed to have three-dimensional turbulent dynamics at small wave numbers and two-dimensional turbulent dynamics at large wave numbers. The large scale separation that we can achieve in our shell model allows us to examine clearly the interplay between these dynamics, which leads to an arrest of the energy cascade at a transitional wave number and an associated accumulation of energy at the same scale. Such pile-up of energy around the transitional wave number is reminiscent of the formation of condensates in two-dimensional turbulence, but, in contrast, it occurs at intermediate wave numbers instead of the smallest wave number.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4","pages":"L043101"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.L043101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Energy cascades lie at the heart of the dynamics of turbulent flows. In a recent study of turbulence in fluids with odd viscosity X. M. de Wit et al. [Nature (London) 627, 515 (2024)0028-083610.1038/s41586-024-07074-z], the two dimensionalization of the flow at small scales leads to the arrest of the energy cascade and selection of an intermediate scale, between the forcing and the viscous scales. To demonstrate the generality of the phenomenon and its existence for a wide class of turbulent systems, we study a shell model that is carefully constructed to have three-dimensional turbulent dynamics at small wave numbers and two-dimensional turbulent dynamics at large wave numbers. The large scale separation that we can achieve in our shell model allows us to examine clearly the interplay between these dynamics, which leads to an arrest of the energy cascade at a transitional wave number and an associated accumulation of energy at the same scale. Such pile-up of energy around the transitional wave number is reminiscent of the formation of condensates in two-dimensional turbulence, but, in contrast, it occurs at intermediate wave numbers instead of the smallest wave number.

湍流级联停滞和中间尺度凝结物的形成。
能量级联是湍流动力学的核心。X. M. de Wit 等人最近对具有奇数粘度的流体中的湍流进行了研究[《自然》(伦敦)627, 515 (2024)0028-083610.1038/s41586-024-07074-z],在小尺度上流动的二维化导致了能量级联的停止,并选择了介于强迫尺度和粘性尺度之间的中间尺度。为了证明这一现象的普遍性及其在各类湍流系统中的存在,我们研究了一个壳模型,该模型经过精心构造,在小波数时具有三维湍流动力学,在大波数时具有二维湍流动力学。在我们的壳模型中可以实现大尺度分离,这使我们能够清楚地研究这些动力学之间的相互作用,这种相互作用会导致能量级联在过渡波数处停止,并在同一尺度处产生相关的能量积累。这种在过渡波数附近的能量堆积让人联想到二维湍流中凝结物的形成,但相比之下,它发生在中间波数而不是最小波数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信