{"title":"Hypergraph animals.","authors":"Michael P H Stumpf","doi":"10.1103/PhysRevE.110.044125","DOIUrl":null,"url":null,"abstract":"<p><p>Here we introduce simple structures for the analysis of complex hypergraphs, hypergraph animals. These structures are designed to describe the local node neighborhoods of nodes in hypergraphs. We establish their relationships to lattice animals and network motifs, and we develop their combinatorial properties for sparse and uncorrelated hypergraphs. We make use of the tight link of hypergraph animals to partition numbers, which opens up a vast mathematical framework for the analysis of hypergraph animals. We then study their abundances in random hypergraphs. Two transferable insights result from this analysis: (i) it establishes the importance of high-cardinality edges in ensembles of random hypergraphs that are inspired by the classical Erdös-Renyí random graphs; and (ii) there is a close connection between degree and hyperedge cardinality in random hypergraphs that shapes animal abundances and spectra profoundly. Both findings imply that hypergraph animals can have the potential to affect information flow and processing in complex systems. Our analysis also suggests that we need to spend more effort on investigating and developing suitable conditional ensembles of random hypergraphs that can capture real-world structures and their complex dependency structures.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044125"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044125","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Here we introduce simple structures for the analysis of complex hypergraphs, hypergraph animals. These structures are designed to describe the local node neighborhoods of nodes in hypergraphs. We establish their relationships to lattice animals and network motifs, and we develop their combinatorial properties for sparse and uncorrelated hypergraphs. We make use of the tight link of hypergraph animals to partition numbers, which opens up a vast mathematical framework for the analysis of hypergraph animals. We then study their abundances in random hypergraphs. Two transferable insights result from this analysis: (i) it establishes the importance of high-cardinality edges in ensembles of random hypergraphs that are inspired by the classical Erdös-Renyí random graphs; and (ii) there is a close connection between degree and hyperedge cardinality in random hypergraphs that shapes animal abundances and spectra profoundly. Both findings imply that hypergraph animals can have the potential to affect information flow and processing in complex systems. Our analysis also suggests that we need to spend more effort on investigating and developing suitable conditional ensembles of random hypergraphs that can capture real-world structures and their complex dependency structures.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.