Dmitrii Dobrynin, Adrien Renaudineau, Mohammad Hizzani, Dmitri Strukov, Masoud Mohseni, John Paul Strachan
{"title":"Energy landscapes of combinatorial optimization in Ising machines.","authors":"Dmitrii Dobrynin, Adrien Renaudineau, Mohammad Hizzani, Dmitri Strukov, Masoud Mohseni, John Paul Strachan","doi":"10.1103/PhysRevE.110.045308","DOIUrl":null,"url":null,"abstract":"<p><p>Physics-based Ising machines (IM) have been developed as dedicated processors for solving hard combinatorial optimization problems with higher speed and better energy efficiency. Generally, such systems employ local search heuristics to traverse energy landscapes in searching for optimal solutions. Here, we quantify and address some of the major challenges met by IMs by extending energy-landscape geometry visualization tools known as disconnectivity graphs. Using efficient sampling methods, we visually capture landscapes of problems having diverse structure and hardness manifesting as energetic and entropic barriers for IMs. We investigate energy barriers, local minima, and configuration space clustering effects caused by locality reduction methods when embedding combinatorial problems to the Ising hardware. To this end, we sample disconnectivity graphs of PUBO energy landscapes and their different QUBO mappings accounting for both local minima and saddle regions. We demonstrate that QUBO energy-landscape properties lead to the subpar performance for quadratic IMs and suggest directions for their improvement.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-2","pages":"045308"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.045308","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-based Ising machines (IM) have been developed as dedicated processors for solving hard combinatorial optimization problems with higher speed and better energy efficiency. Generally, such systems employ local search heuristics to traverse energy landscapes in searching for optimal solutions. Here, we quantify and address some of the major challenges met by IMs by extending energy-landscape geometry visualization tools known as disconnectivity graphs. Using efficient sampling methods, we visually capture landscapes of problems having diverse structure and hardness manifesting as energetic and entropic barriers for IMs. We investigate energy barriers, local minima, and configuration space clustering effects caused by locality reduction methods when embedding combinatorial problems to the Ising hardware. To this end, we sample disconnectivity graphs of PUBO energy landscapes and their different QUBO mappings accounting for both local minima and saddle regions. We demonstrate that QUBO energy-landscape properties lead to the subpar performance for quadratic IMs and suggest directions for their improvement.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.