{"title":"Comparison of the microcanonical population annealing algorithm with the Wang-Landau algorithm.","authors":"Vyacheslav Mozolenko, Marina Fadeeva, Lev Shchur","doi":"10.1103/PhysRevE.110.045301","DOIUrl":null,"url":null,"abstract":"<p><p>The development of new algorithms for simulations in physics is as important as the development of new analytical methods. In this paper, we present a comparison of the recently developed microcanonical population annealing (MCPA) algorithm with the rather mature Wang-Landau algorithm. The comparison is performed on two cases of the Potts model that exhibit a first-order phase transition. We compare the simulation results of both methods with exactly known results, including the finite-dimensional dependence of the maximum of the specific heat capacity. We evaluate the Binder cumulant minimum, the ratio of peaks in the energy distribution at the critical temperature, the energies of the ordered and disordered phases, and interface tension. Both methods exhibit similar accuracy at selected sets of modeling parameters.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-2","pages":"045301"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.045301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of new algorithms for simulations in physics is as important as the development of new analytical methods. In this paper, we present a comparison of the recently developed microcanonical population annealing (MCPA) algorithm with the rather mature Wang-Landau algorithm. The comparison is performed on two cases of the Potts model that exhibit a first-order phase transition. We compare the simulation results of both methods with exactly known results, including the finite-dimensional dependence of the maximum of the specific heat capacity. We evaluate the Binder cumulant minimum, the ratio of peaks in the energy distribution at the critical temperature, the energies of the ordered and disordered phases, and interface tension. Both methods exhibit similar accuracy at selected sets of modeling parameters.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.