Post-sepsis chronic muscle weakness can be prevented by pharmacological protection of mitochondria.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meagan S Kingren, Alexander R Keeble, Alyson M Galvan-Lara, Jodi M Ogle, Zoltán Ungvári, Daret K St Clair, Timothy A Butterfield, Allison M Owen, Christopher S Fry, Samir P Patel, Hiroshi Saito
{"title":"Post-sepsis chronic muscle weakness can be prevented by pharmacological protection of mitochondria.","authors":"Meagan S Kingren, Alexander R Keeble, Alyson M Galvan-Lara, Jodi M Ogle, Zoltán Ungvári, Daret K St Clair, Timothy A Butterfield, Allison M Owen, Christopher S Fry, Samir P Patel, Hiroshi Saito","doi":"10.1186/s10020-024-00982-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sepsis, mainly caused by bacterial infections, is the leading cause of in-patient hospitalizations. After discharge, most sepsis survivors suffer from long-term medical complications, particularly chronic skeletal muscle weakness. To investigate this medical condition in detail, we previously developed a murine severe sepsis-survival model that exhibits long-term post-sepsis skeletal muscle weakness. While mitochondrial abnormalities were present in the skeletal muscle of the sepsis surviving mice, the relationship between abnormal mitochondria and muscle weakness remained unclear. Herein, we aimed to investigate whether mitochondrial abnormalities have a causal role in chronic post-sepsis muscle weakness and could thereby serve as a therapeutic target.</p><p><strong>Methods: </strong>Experimental polymicrobial abdominal sepsis was induced in 16-18 months old male and female mice using cecal slurry injection with subsequent antibiotic and fluid resuscitation. To evaluate the pathological roles of mitochondrial abnormalities in post-sepsis skeletal muscle weakness, we utilized a transgenic mouse strain overexpressing the mitochondria-specific antioxidant enzyme manganese superoxide dismutase (MnSOD). Following sepsis development in C57BL/6 mice, we evaluated the effect of the mitochondria-targeting synthetic tetrapeptide SS-31 in protecting mitochondria from sepsis-induced damage and preventing skeletal muscle weakness development. In vivo and in vitro techniques were leveraged to assess muscle function at multiple timepoints throughout sepsis development and resolution. Histological and biochemical analyses including bulk mRNA sequencing were used to detect molecular changes in the muscle during and after sepsis RESULTS: Our time course study revealed that post sepsis skeletal muscle weakness develops progressively after the resolution of acute sepsis and in parallel with the accumulation of mitochondrial abnormalities and changes in the mitochondria-related gene expression profile. Transgenic mice overexpressing MnSOD were protected from mitochondrial abnormalities and muscle weakness following sepsis. Further, pharmacological protection of mitochondria utilizing SS-31 during sepsis effectively prevented the later development of muscle weakness.</p><p><strong>Conclusions: </strong>Our study revealed that the accumulation of mitochondrial abnormalities is the major cause of post-sepsis skeletal muscle weakness. Pharmacological protection of mitochondria during acute sepsis is a potential clinical treatment strategy to prevent post-sepsis muscle weakness.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"221"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00982-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sepsis, mainly caused by bacterial infections, is the leading cause of in-patient hospitalizations. After discharge, most sepsis survivors suffer from long-term medical complications, particularly chronic skeletal muscle weakness. To investigate this medical condition in detail, we previously developed a murine severe sepsis-survival model that exhibits long-term post-sepsis skeletal muscle weakness. While mitochondrial abnormalities were present in the skeletal muscle of the sepsis surviving mice, the relationship between abnormal mitochondria and muscle weakness remained unclear. Herein, we aimed to investigate whether mitochondrial abnormalities have a causal role in chronic post-sepsis muscle weakness and could thereby serve as a therapeutic target.

Methods: Experimental polymicrobial abdominal sepsis was induced in 16-18 months old male and female mice using cecal slurry injection with subsequent antibiotic and fluid resuscitation. To evaluate the pathological roles of mitochondrial abnormalities in post-sepsis skeletal muscle weakness, we utilized a transgenic mouse strain overexpressing the mitochondria-specific antioxidant enzyme manganese superoxide dismutase (MnSOD). Following sepsis development in C57BL/6 mice, we evaluated the effect of the mitochondria-targeting synthetic tetrapeptide SS-31 in protecting mitochondria from sepsis-induced damage and preventing skeletal muscle weakness development. In vivo and in vitro techniques were leveraged to assess muscle function at multiple timepoints throughout sepsis development and resolution. Histological and biochemical analyses including bulk mRNA sequencing were used to detect molecular changes in the muscle during and after sepsis RESULTS: Our time course study revealed that post sepsis skeletal muscle weakness develops progressively after the resolution of acute sepsis and in parallel with the accumulation of mitochondrial abnormalities and changes in the mitochondria-related gene expression profile. Transgenic mice overexpressing MnSOD were protected from mitochondrial abnormalities and muscle weakness following sepsis. Further, pharmacological protection of mitochondria utilizing SS-31 during sepsis effectively prevented the later development of muscle weakness.

Conclusions: Our study revealed that the accumulation of mitochondrial abnormalities is the major cause of post-sepsis skeletal muscle weakness. Pharmacological protection of mitochondria during acute sepsis is a potential clinical treatment strategy to prevent post-sepsis muscle weakness.

通过对线粒体进行药物保护,可以预防败血症后慢性肌无力。
背景:败血症主要由细菌感染引起,是住院病人的主要病因。出院后,大多数败血症幸存者都会出现长期医疗并发症,尤其是慢性骨骼肌无力。为了详细研究这种病症,我们之前建立了一种小鼠严重败血症存活模型,该模型在败血症后表现出长期骨骼肌无力。虽然脓毒症存活小鼠的骨骼肌中存在线粒体异常,但线粒体异常与肌肉无力之间的关系仍不清楚。在此,我们旨在研究线粒体异常是否与败血症后慢性肌无力有因果关系,并以此作为治疗靶点:方法:使用盲肠浆液注射法诱导 16-18 个月大的雌雄小鼠患上实验性多菌性腹腔败血症,随后进行抗生素和液体复苏。为了评估线粒体异常在败血症后骨骼肌衰弱中的病理作用,我们使用了过表达线粒体特异性抗氧化酶锰超氧化物歧化酶(MnSOD)的转基因小鼠品系。在 C57BL/6 小鼠发生败血症后,我们评估了线粒体靶向合成四肽 SS-31 在保护线粒体免受败血症诱导的损伤和防止骨骼肌无力发生方面的作用。我们利用体内和体外技术,在脓毒症发展和缓解过程中的多个时间点评估肌肉功能。通过组织学和生化分析(包括大量 mRNA 测序)来检测脓毒症期间和之后肌肉中的分子变化 结果:我们的时间进程研究显示,脓毒症后骨骼肌无力是在急性脓毒症缓解后逐渐发展起来的,与线粒体异常的积累和线粒体相关基因表达谱的变化同时发生。过表达 MnSOD 的转基因小鼠在败血症后可免受线粒体异常和肌肉无力的影响。此外,在败血症期间利用 SS-31 对线粒体进行药理学保护,可有效防止后来出现肌无力:我们的研究表明,线粒体异常的积累是败血症后骨骼肌无力的主要原因。在急性脓毒症期间对线粒体进行药物保护是预防脓毒症后肌无力的一种潜在临床治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信