{"title":"Pan-genomic characterization and structural variant analysis reveal insights into spore development and species diversity in <i>Ganoderma</i>.","authors":"Hang Yu, Shasha Wang, Lina Wang, Weixin Wu, Wei Xu, Shuisheng Wu, Xiaoyan Li, Wen Xu, Zehao Huang, Yu Lin, Haifeng Wang","doi":"10.1099/mgen.0.001328","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the genomic diversity and functional implications of <i>Ganoderma</i> species is crucial for elucidating their evolutionary history and biotechnological potential. Here, we present the first pan-genomic analysis of <i>Ganoderma</i> spp., combining five newly sequenced genomes with ten publicly available genomes. Our comprehensive comparative study unveiled a rich genomic landscape, identifying core genes shared among all <i>Ganoderma</i> strains and species-specific gene sets. Additionally, we identified structural variants impacting the expression of key genes, including insights into the <i>MSH4</i> gene involved in DNA repair and recombination processes, which exhibits a 440 bp insertion in the promoter region and a leucine-to-serine mutation in the gene body, potentially increasing spore production in the S3 strain. Overall, our study provides valuable insights into the genomic architecture and functional diversity of <i>Ganoderma</i>, paving the way for further research on its evolutionary dynamics, biotechnological applications and pharmaceutical potential.</p>","PeriodicalId":18487,"journal":{"name":"Microbial Genomics","volume":"10 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mgen.0.001328","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the genomic diversity and functional implications of Ganoderma species is crucial for elucidating their evolutionary history and biotechnological potential. Here, we present the first pan-genomic analysis of Ganoderma spp., combining five newly sequenced genomes with ten publicly available genomes. Our comprehensive comparative study unveiled a rich genomic landscape, identifying core genes shared among all Ganoderma strains and species-specific gene sets. Additionally, we identified structural variants impacting the expression of key genes, including insights into the MSH4 gene involved in DNA repair and recombination processes, which exhibits a 440 bp insertion in the promoter region and a leucine-to-serine mutation in the gene body, potentially increasing spore production in the S3 strain. Overall, our study provides valuable insights into the genomic architecture and functional diversity of Ganoderma, paving the way for further research on its evolutionary dynamics, biotechnological applications and pharmaceutical potential.
了解灵芝物种的基因组多样性和功能意义对于阐明其进化历史和生物技术潜力至关重要。在这里,我们结合五个新测序的基因组和十个公开的基因组,首次对灵芝属进行了泛基因组分析。我们的综合比较研究揭示了丰富的基因组图谱,确定了所有灵芝菌株共有的核心基因和物种特有的基因组。此外,我们还发现了影响关键基因表达的结构变异,包括对参与 DNA 修复和重组过程的 MSH4 基因的深入研究,该基因在启动子区域有一个 440 bp 的插入,在基因体中有一个亮氨酸到丝氨酸的突变,这可能会增加 S3 菌株的孢子产量。总之,我们的研究为灵芝的基因组结构和功能多样性提供了宝贵的见解,为进一步研究灵芝的进化动态、生物技术应用和制药潜力铺平了道路。
期刊介绍:
Microbial Genomics (MGen) is a fully open access, mandatory open data and peer-reviewed journal publishing high-profile original research on archaea, bacteria, microbial eukaryotes and viruses.