Lipid Nanoparticle Delivery of TALEN mRNA Targeting LPA Causes Gene Disruption and Plasma Lipoprotein(a) Reduction in Transgenic Mice.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Daniel A Garcia, Abigail F Pierre, Linda Quirino, Grishma Acharya, Aishwarya Vasudevan, Yihua Pei, Emily Chung, Jason Y H Chang, Samuel Lee, Michael Endow, Kristen Kuakini, Michael Bresnahan, Maria Chumpitaz, Kumar Rajappan, Suezanne Parker, Padmanabh Chivukula, Stefen A Boehme, Ramon Diaz-Trelles
{"title":"Lipid Nanoparticle Delivery of TALEN mRNA Targeting LPA Causes Gene Disruption and Plasma Lipoprotein(a) Reduction in Transgenic Mice.","authors":"Daniel A Garcia, Abigail F Pierre, Linda Quirino, Grishma Acharya, Aishwarya Vasudevan, Yihua Pei, Emily Chung, Jason Y H Chang, Samuel Lee, Michael Endow, Kristen Kuakini, Michael Bresnahan, Maria Chumpitaz, Kumar Rajappan, Suezanne Parker, Padmanabh Chivukula, Stefen A Boehme, Ramon Diaz-Trelles","doi":"10.1016/j.ymthe.2024.11.020","DOIUrl":null,"url":null,"abstract":"<p><p>Lipoprotein(a), or Lp(a), is encoded by the LPA gene and is a causal genetic risk factor for cardiovascular disease. Individuals with high Lp(a) are at risk for cardiovascular morbidity and are refractory to standard lipid-lowering agents. Lp(a)-lowering therapies currently in clinical development require repetitive dosing, while a gene editing approach presents an opportunity for a single-dose treatment. In this study, mRNAs encoding Transcription Activator-Like Effector Nucleases (TALENs) were designed to target human LPA for gene disruption and permanent Lp(a) reduction. TALEN mRNAs were screened in vitro and found to cause on-target gene editing and target protein reduction with minimal off-target editing. TALEN mRNAs were then encapsulated with LUNAR®, a proprietary lipid nanoparticle (LNP), and administered to transgenic mice that expressed a human LPA transgene. A single dose of TALEN mRNA-LNPs reduced plasma Lp(a) levels in mice by over 80%, which was sustained for at least 5 weeks. Moreover, both standard and long-read next generation sequencing confirmed the presence of gene-inactivating deletions at LPA transgene loci. Overall, this study serves as a proof-of-concept for using TALEN-mediated gene editing to disrupt LPA in vivo, paving the way for the development of a feasible gene editing therapy for patients with high Lp(a).</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.11.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipoprotein(a), or Lp(a), is encoded by the LPA gene and is a causal genetic risk factor for cardiovascular disease. Individuals with high Lp(a) are at risk for cardiovascular morbidity and are refractory to standard lipid-lowering agents. Lp(a)-lowering therapies currently in clinical development require repetitive dosing, while a gene editing approach presents an opportunity for a single-dose treatment. In this study, mRNAs encoding Transcription Activator-Like Effector Nucleases (TALENs) were designed to target human LPA for gene disruption and permanent Lp(a) reduction. TALEN mRNAs were screened in vitro and found to cause on-target gene editing and target protein reduction with minimal off-target editing. TALEN mRNAs were then encapsulated with LUNAR®, a proprietary lipid nanoparticle (LNP), and administered to transgenic mice that expressed a human LPA transgene. A single dose of TALEN mRNA-LNPs reduced plasma Lp(a) levels in mice by over 80%, which was sustained for at least 5 weeks. Moreover, both standard and long-read next generation sequencing confirmed the presence of gene-inactivating deletions at LPA transgene loci. Overall, this study serves as a proof-of-concept for using TALEN-mediated gene editing to disrupt LPA in vivo, paving the way for the development of a feasible gene editing therapy for patients with high Lp(a).

以 LPA 为靶标的 TALEN mRNA 的脂质纳米颗粒递送会导致基因中断和转基因小鼠血浆脂蛋白(a)减少。
脂蛋白(a)或 Lp(a)由 LPA 基因编码,是心血管疾病的致病遗传风险因素。脂蛋白(a)过高的人有心血管发病的风险,而且对标准降脂药物难耐。目前临床开发的降血脂疗法需要重复给药,而基因编辑方法则为单剂量治疗提供了机会。在这项研究中,设计了编码转录激活剂样效应核酸酶(TALENs)的mRNA,以人类LPA为靶点进行基因破坏,从而永久性地降低脂蛋白(a)。对 TALEN mRNA 进行了体外筛选,发现它们能进行靶上基因编辑和靶蛋白减少,且脱靶编辑极少。然后,将 TALEN mRNA 与专有的脂质纳米颗粒 (LNP) LUNAR® 进行封装,并给表达人类 LPA 转基因的转基因小鼠注射。单剂量的 TALEN mRNA-LNPs 可使小鼠血浆脂蛋白(a)水平降低 80% 以上,并可持续至少 5 周。此外,标准和长线程新一代测序都证实了 LPA 转基因位点存在基因失活缺失。总之,这项研究证明了使用 TALEN 介导的基因编辑技术在体内破坏 LPA 的概念,为开发针对高脂蛋白(a)患者的可行基因编辑疗法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信