{"title":"Tracking anharmonic oscillations in the structure of β-1,3-diacetylpyrene","authors":"A. Zwolenik , A. Makal","doi":"10.1107/S2052252524010443","DOIUrl":null,"url":null,"abstract":"<div><div>A recently discovered β polymorph of 1,3-diacetylpyrene has turned out to be a prominent negative thermal expansion material. Its unique properties can be linked to anharmonic oscillations in the crystal structure. The onset and development of anharmonic behavior have been successfully tracked over a wide temperature range by single-crystal X-ray diffraction experiments. Sufficient diffraction data quality combined with modern quantum crystallography tools allowed a thorough analysis of the elusive anharmonic effects for a moderate-scattering purely organic compound.</div></div><div><div>A recently discovered β polymorph of 1,3-diacetylpyrene has turned out to be a prominent negative thermal expansion material, with a linear thermal expansion coefficient of −199 (6) MK<sup>−1</sup> at room temperature. Its unique properties can be linked to anharmonic oscillations in the crystal structure that can be attributed to several weak C—H⋯O interactions. The onset and development of anharmonic effects have been successfully tracked over a wide (90–390 K) temperature range using single-crystal X-ray diffraction. Experimental data of sufficient quality combined with Hirshfeld atom refinement of the crystal structures enabled a quantitative analysis of elusive anharmonic effects within the Gram–Charlier formalism. This example highlights that quantum crystallography tools can and should be applied in structural analysis even for data collected at high temperatures as well as of standard (∼0.8 Å) resolution.</div></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"12 1","pages":"Pages 23-35"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252525000041","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A recently discovered β polymorph of 1,3-diacetylpyrene has turned out to be a prominent negative thermal expansion material. Its unique properties can be linked to anharmonic oscillations in the crystal structure. The onset and development of anharmonic behavior have been successfully tracked over a wide temperature range by single-crystal X-ray diffraction experiments. Sufficient diffraction data quality combined with modern quantum crystallography tools allowed a thorough analysis of the elusive anharmonic effects for a moderate-scattering purely organic compound.
A recently discovered β polymorph of 1,3-diacetylpyrene has turned out to be a prominent negative thermal expansion material, with a linear thermal expansion coefficient of −199 (6) MK−1 at room temperature. Its unique properties can be linked to anharmonic oscillations in the crystal structure that can be attributed to several weak C—H⋯O interactions. The onset and development of anharmonic effects have been successfully tracked over a wide (90–390 K) temperature range using single-crystal X-ray diffraction. Experimental data of sufficient quality combined with Hirshfeld atom refinement of the crystal structures enabled a quantitative analysis of elusive anharmonic effects within the Gram–Charlier formalism. This example highlights that quantum crystallography tools can and should be applied in structural analysis even for data collected at high temperatures as well as of standard (∼0.8 Å) resolution.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.