New genomic resources inform transcriptomic responses to heavy metal toxins in the common Eastern bumble bee Bombus impatiens.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Amy L Toth, Christopher D R Wyatt, Rick E Masonbrink, Katherine S Geist, Ryan Fortune, Sarah B Scott, Emeline Favreau, Sandra M Rehan, Seirian Sumner, Mary M Gardiner, Frances S Sivakoff
{"title":"New genomic resources inform transcriptomic responses to heavy metal toxins in the common Eastern bumble bee Bombus impatiens.","authors":"Amy L Toth, Christopher D R Wyatt, Rick E Masonbrink, Katherine S Geist, Ryan Fortune, Sarah B Scott, Emeline Favreau, Sandra M Rehan, Seirian Sumner, Mary M Gardiner, Frances S Sivakoff","doi":"10.1186/s12864-024-11040-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The common Eastern bumble bee Bombus impatiens is native to North America and is the main commercially reared pollinator in the Americas. There has been extensive research on this species related to its social biology, applied pollination, and genetics. The genome of this species was previously sequenced using short-read technology, but recent technological advances provide an opportunity for substantial improvements. This species is common in agricultural and urban environments, and heavy metal contaminants produced by industrial processes can negatively impact it. To begin to identify possible mechanisms underlying responses to these toxins, we used RNA-sequencing to examine how exposure to a cocktail of four heavy metals at field-realistic levels from industrial areas affected B. impatiens worker gene expression.</p><p><strong>Results: </strong>PacBio long-read sequencing resulted in 544x coverage of the genome, and HiC technology was used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high quality, chromosome-level assembly. The sequenced genome size is 266.6 Mb and BRAKER3 annotation produced 13,938 annotated genes. The genome and annotation show high completeness, with ≥ 96% of conserved Eukaryota and Hymenoptera genes present in both the assembly and annotated genes. RNA sequencing of heavy metal exposed workers revealed 603 brain and 34 fat body differentially expressed genes. In the brain, differentially expressed genes had biological functions related to chaperone activity and protein folding.</p><p><strong>Conclusions: </strong>Our data represent a large improvement in genomic resources for this important model species-with 10% more genome coverage than previously available, and a high-quality assembly into 18 chromosomes, the expected karyotype for this species. The new gene annotation added 777 new genes. Altered gene expression in response to heavy metal exposure suggests a possible mechanism for how these urban toxins are negatively impacting bee health, specifically by altering protein folding in the brain. Overall, these data are useful as a general high quality genomic resource for this species, and provide insight into mechanisms underlying tissue-specific toxicological responses of bumble bees to heavy metals.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1106"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11040-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The common Eastern bumble bee Bombus impatiens is native to North America and is the main commercially reared pollinator in the Americas. There has been extensive research on this species related to its social biology, applied pollination, and genetics. The genome of this species was previously sequenced using short-read technology, but recent technological advances provide an opportunity for substantial improvements. This species is common in agricultural and urban environments, and heavy metal contaminants produced by industrial processes can negatively impact it. To begin to identify possible mechanisms underlying responses to these toxins, we used RNA-sequencing to examine how exposure to a cocktail of four heavy metals at field-realistic levels from industrial areas affected B. impatiens worker gene expression.

Results: PacBio long-read sequencing resulted in 544x coverage of the genome, and HiC technology was used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high quality, chromosome-level assembly. The sequenced genome size is 266.6 Mb and BRAKER3 annotation produced 13,938 annotated genes. The genome and annotation show high completeness, with ≥ 96% of conserved Eukaryota and Hymenoptera genes present in both the assembly and annotated genes. RNA sequencing of heavy metal exposed workers revealed 603 brain and 34 fat body differentially expressed genes. In the brain, differentially expressed genes had biological functions related to chaperone activity and protein folding.

Conclusions: Our data represent a large improvement in genomic resources for this important model species-with 10% more genome coverage than previously available, and a high-quality assembly into 18 chromosomes, the expected karyotype for this species. The new gene annotation added 777 new genes. Altered gene expression in response to heavy metal exposure suggests a possible mechanism for how these urban toxins are negatively impacting bee health, specifically by altering protein folding in the brain. Overall, these data are useful as a general high quality genomic resource for this species, and provide insight into mechanisms underlying tissue-specific toxicological responses of bumble bees to heavy metals.

新的基因组资源为东方大黄蜂(Bombus impatiens)对重金属毒素的转录组反应提供了信息。
背景:常见的东方熊蜂(Bombus impatiens)原产于北美洲,是美洲主要的商业饲养授粉昆虫。人们对该物种的社会生物学、应用授粉和遗传学进行了广泛的研究。该物种的基因组以前是用短线程技术测序的,但最近的技术进步为大幅改进提供了机会。该物种常见于农业和城市环境中,工业生产过程中产生的重金属污染物会对其产生负面影响。为了开始确定对这些毒素的反应的可能机制,我们使用 RNA 测序技术研究了工业区的四种重金属鸡尾酒对无患子工人基因表达的影响:结果:PacBio 长线程测序实现了 544 倍的基因组覆盖率,HiC 技术用于绘制染色质接触图。利用 Juicer 和手工整理,基因组被支架化为 18 个主要的假分子,代表了高质量的染色体级组装。测序的基因组大小为 266.6 Mb,BRAKER3 注释产生了 13,938 个注释基因。基因组和注释显示出很高的完整性,真核细胞和膜翅目的保守基因有≥96%出现在组装和注释基因中。对暴露于重金属的工人进行的 RNA 测序发现了 603 个脑和 34 个脂肪体差异表达基因。在大脑中,差异表达基因的生物学功能与伴侣活性和蛋白质折叠有关:我们的数据代表了这一重要模式物种基因组资源的巨大进步--基因组覆盖率比以前提高了 10%,并高质量地组装成 18 条染色体,这是该物种的预期核型。新的基因注释增加了 777 个新基因。重金属暴露导致的基因表达改变表明,这些城市毒素对蜜蜂健康产生负面影响的可能机制,特别是通过改变大脑中的蛋白质折叠。总之,这些数据可作为该物种通用的高质量基因组资源,并有助于深入了解熊蜂对重金属的特异性组织毒性反应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信