Effects of exogenous melatonin on drought stress in celery (Apium graveolens L.): unraveling the modulation of chlorophyll and glucose metabolism pathways.
IF 3.5 2区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiageng Du, Weilong Li, Zhuo Wang, Zhiheng Chen, Chao Wang, Wei Lu, Aisheng Xiong, Guofei Tan, Yangxia Zheng, Mengyao Li
{"title":"Effects of exogenous melatonin on drought stress in celery (Apium graveolens L.): unraveling the modulation of chlorophyll and glucose metabolism pathways.","authors":"Jiageng Du, Weilong Li, Zhuo Wang, Zhiheng Chen, Chao Wang, Wei Lu, Aisheng Xiong, Guofei Tan, Yangxia Zheng, Mengyao Li","doi":"10.1186/s12864-024-11054-y","DOIUrl":null,"url":null,"abstract":"<p><p>Drought, a prevalent abiotic stressor, significantly impacts plant yield and quality. Melatonin (MT), a potent and economical growth regulator, plays a pivotal role in augmenting crop resilience against stress. This study investigated the efficacy of exogenous MT on drought-stressed celery seedlings by comprehensively analyzing phenotypic, physiological, and molecular attributes. The results revealed that exogenous MT mitigated celery seedling damage under drought stress, lowered malondialdehyde (MDA) concentrations, elevated oxidase activities, osmolyte levels, chlorophyll content, and augmented light energy conversion efficiency. Transcriptomic analysis demonstrated that MT could regulate chlorophyll synthesis genes (AgPORA1 and AgDVR2), contributing to heightened photosynthetic potential and increased drought tolerance in celery. Moreover, MT was found to modulate glycolytic pathways, upregulate pyruvate synthesis genes (AgPEP1 and AgPK3), and downregulate degradation genes (AgPDC2 and AgPDHA2), thereby promoting pyruvate accumulation and enhancing peroxidase activity and drought tolerance. The RNA-seq and qRT-PCR analyses demonstrated similar results, showing the same general expression trends. The study elucidates the physiological and molecular mechanisms underlying MT's stress-alleviating effects in celery seedlings, offering insights into MT-based strategies in plant cultivation and breeding for arid environments.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1104"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575136/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11054-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought, a prevalent abiotic stressor, significantly impacts plant yield and quality. Melatonin (MT), a potent and economical growth regulator, plays a pivotal role in augmenting crop resilience against stress. This study investigated the efficacy of exogenous MT on drought-stressed celery seedlings by comprehensively analyzing phenotypic, physiological, and molecular attributes. The results revealed that exogenous MT mitigated celery seedling damage under drought stress, lowered malondialdehyde (MDA) concentrations, elevated oxidase activities, osmolyte levels, chlorophyll content, and augmented light energy conversion efficiency. Transcriptomic analysis demonstrated that MT could regulate chlorophyll synthesis genes (AgPORA1 and AgDVR2), contributing to heightened photosynthetic potential and increased drought tolerance in celery. Moreover, MT was found to modulate glycolytic pathways, upregulate pyruvate synthesis genes (AgPEP1 and AgPK3), and downregulate degradation genes (AgPDC2 and AgPDHA2), thereby promoting pyruvate accumulation and enhancing peroxidase activity and drought tolerance. The RNA-seq and qRT-PCR analyses demonstrated similar results, showing the same general expression trends. The study elucidates the physiological and molecular mechanisms underlying MT's stress-alleviating effects in celery seedlings, offering insights into MT-based strategies in plant cultivation and breeding for arid environments.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.