GraCEImpute: A novel graph clustering autoencoder approach for imputation of single-cell RNA-seq data.

IF 7 2区 医学 Q1 BIOLOGY
Yueying Wang, Kewei Li, Ruochi Zhang, Yusi Fan, Lan Huang, Fengfeng Zhou
{"title":"GraCEImpute: A novel graph clustering autoencoder approach for imputation of single-cell RNA-seq data.","authors":"Yueying Wang, Kewei Li, Ruochi Zhang, Yusi Fan, Lan Huang, Fengfeng Zhou","doi":"10.1016/j.compbiomed.2024.109400","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) technology establishes a unique view for elucidating cellular heterogeneity in various biological systems. Yet the scRNA-seq data is compromised by a high dropout rate due to the technological limitation, and the substantial data loss poses computational challenges on subsequent analyses. This study introduces a novel graph clustering autoencoder (GCAE)-based imputation approach (GraCEImpute) to address the challenge of missing data in scRNA-seq data. Our comprehensive evaluation demonstrates that the GraCEImpute model outperforms existing approaches in accurately imputing dropout zeros within scRNA-seq data. The proposed GraCEImpute model also demonstrates the significantly enhanced quality of downstream scRNA-seq data analyses, including clustering, differential gene expression (DEG) analysis, and cell trajectory inference. These improvements underscore the GraCEImpute model's potential to facilitate a deeper understanding of cellular processes and heterogeneity through the scRNA-seq data analyses. The source code is released at https://www.healthinformaticslab.org/supp/.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"109400"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109400","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing (scRNA-seq) technology establishes a unique view for elucidating cellular heterogeneity in various biological systems. Yet the scRNA-seq data is compromised by a high dropout rate due to the technological limitation, and the substantial data loss poses computational challenges on subsequent analyses. This study introduces a novel graph clustering autoencoder (GCAE)-based imputation approach (GraCEImpute) to address the challenge of missing data in scRNA-seq data. Our comprehensive evaluation demonstrates that the GraCEImpute model outperforms existing approaches in accurately imputing dropout zeros within scRNA-seq data. The proposed GraCEImpute model also demonstrates the significantly enhanced quality of downstream scRNA-seq data analyses, including clustering, differential gene expression (DEG) analysis, and cell trajectory inference. These improvements underscore the GraCEImpute model's potential to facilitate a deeper understanding of cellular processes and heterogeneity through the scRNA-seq data analyses. The source code is released at https://www.healthinformaticslab.org/supp/.

GraCEImpute:用于单细胞 RNA-seq 数据估算的新型图聚类自动编码器方法
单细胞 RNA 测序(scRNA-seq)技术为阐明各种生物系统中的细胞异质性提供了独特的视角。然而,由于技术限制,scRNA-seq 数据的丢失率很高,这给后续分析带来了计算上的挑战。本研究介绍了一种新颖的基于图聚类自动编码器(GCAE)的估算方法(GraCEImpute),以应对scRNA-seq数据缺失的挑战。我们的综合评估结果表明,GraCEImpute 模型在精确归因 scRNA-seq 数据中的缺失零点方面优于现有方法。拟议的 GraCEImpute 模型还证明了下游 scRNA-seq 数据分析质量的显著提高,包括聚类、差异基因表达 (DEG) 分析和细胞轨迹推断。这些改进凸显了 GraCEImpute 模型通过 scRNA-seq 数据分析促进深入了解细胞过程和异质性的潜力。源代码发布于 https://www.healthinformaticslab.org/supp/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信