Synthesis and structural proof of novel oxazolo[5,4-d]pyrimidine derivatives as potential VEGFR2 inhibitors. In vitro study of their anticancer activity.
Aleksandra Sochacka-Ćwikła, Andrzej Regiec, Żaneta Czyżnikowska, Urszula Śliwińska-Hill, Anna Kwiecień, Benita Wiatrak, Agnieszka Rusak, Klaudia Krawczyńska, Monika Mrozowska, Sylwia Borska, Katarzyna Ratajczak, Anna Pyra, Marcin Mączyński
{"title":"Synthesis and structural proof of novel oxazolo[5,4-d]pyrimidine derivatives as potential VEGFR2 inhibitors. In vitro study of their anticancer activity.","authors":"Aleksandra Sochacka-Ćwikła, Andrzej Regiec, Żaneta Czyżnikowska, Urszula Śliwińska-Hill, Anna Kwiecień, Benita Wiatrak, Agnieszka Rusak, Klaudia Krawczyńska, Monika Mrozowska, Sylwia Borska, Katarzyna Ratajczak, Anna Pyra, Marcin Mączyński","doi":"10.1016/j.bioorg.2024.107958","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to design and synthesize novel 6-N-benzyloxazolo[5,4-d]pyrimidin-7(6H)-imines 3a-j as possible inhibitors of the vascular endothelial growth factor receptor 2 (VEGFR2). The structures of newly synthesized compounds were confirmed via spectral and crystallographic data. NOESY spectroscopy was very useful in distinguishing between 6-N-benzyl-7(6H)-imine 3a and isomeric 7-N-benzyl-7-amine 4a, obtained by Dimroth rearrangement. Molecular docking at the VEGFR2 active site was performed, indicating that 7(6H)-imines should have a similar binding mode as type II VEGFR2 inhibitors. All derivatives were preliminary evaluated for in vitro cytotoxic activity against four human cancer cell lines, including lung cancer (A549), colorectal cancer (HT-29), melanoma (A375), breast cancer (MCF7), using tivozanib as a reference drug, and some of them were subjected to VEGFR2 inhibition, anti-angiogenic activity, and human serum albumin (HSA) binding assays. Only 6-N-2,4-dimethoxybenzyl derivative 3h appeared to be as active as tivozanib against all tested anticancer cell lines but equally toxic to healthy normal human dermal fibroblasts (NHDF). Derivatives 3f (6-N-2-methybenzyl) and 3b (6-N-4-methylbenzyl) have revealed slightly worse activity than 3h. They were cytotoxic agents comparable to tivozanib against three anticancer lines, but only 3b showed no cytotoxicity against NHDF. Both 3b and 3h proved to be effective VEGFR2 inhibitors with IC<sub>50</sub> values comparable to that of tivozanib. Notably, 4a did not actually show an anticancer effect against the tested cancer lines, in contrast to isomeric 3a. In an angiogenesis assay, 3f and 3h significantly suppressed the tube formation ability of human dermal microvascular endothelial cells (HMEC-1), indicating their anti-angiogenic potential. The interactions between these compounds and HSA appeared to occur at two specific binding sites.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107958"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107958","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed to design and synthesize novel 6-N-benzyloxazolo[5,4-d]pyrimidin-7(6H)-imines 3a-j as possible inhibitors of the vascular endothelial growth factor receptor 2 (VEGFR2). The structures of newly synthesized compounds were confirmed via spectral and crystallographic data. NOESY spectroscopy was very useful in distinguishing between 6-N-benzyl-7(6H)-imine 3a and isomeric 7-N-benzyl-7-amine 4a, obtained by Dimroth rearrangement. Molecular docking at the VEGFR2 active site was performed, indicating that 7(6H)-imines should have a similar binding mode as type II VEGFR2 inhibitors. All derivatives were preliminary evaluated for in vitro cytotoxic activity against four human cancer cell lines, including lung cancer (A549), colorectal cancer (HT-29), melanoma (A375), breast cancer (MCF7), using tivozanib as a reference drug, and some of them were subjected to VEGFR2 inhibition, anti-angiogenic activity, and human serum albumin (HSA) binding assays. Only 6-N-2,4-dimethoxybenzyl derivative 3h appeared to be as active as tivozanib against all tested anticancer cell lines but equally toxic to healthy normal human dermal fibroblasts (NHDF). Derivatives 3f (6-N-2-methybenzyl) and 3b (6-N-4-methylbenzyl) have revealed slightly worse activity than 3h. They were cytotoxic agents comparable to tivozanib against three anticancer lines, but only 3b showed no cytotoxicity against NHDF. Both 3b and 3h proved to be effective VEGFR2 inhibitors with IC50 values comparable to that of tivozanib. Notably, 4a did not actually show an anticancer effect against the tested cancer lines, in contrast to isomeric 3a. In an angiogenesis assay, 3f and 3h significantly suppressed the tube formation ability of human dermal microvascular endothelial cells (HMEC-1), indicating their anti-angiogenic potential. The interactions between these compounds and HSA appeared to occur at two specific binding sites.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.