CPIScore: A Deep Learning Approach for Rapid Scoring and Interpretation of Protein-Ligand Binding Interactions.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Li Liang, Yunxin Duan, Chen Zeng, Boheng Wan, Huifeng Yao, Haichun Liu, Tao Lu, Yanmin Zhang, Yadong Chen, Jun Shen
{"title":"CPIScore: A Deep Learning Approach for Rapid Scoring and Interpretation of Protein-Ligand Binding Interactions.","authors":"Li Liang, Yunxin Duan, Chen Zeng, Boheng Wan, Huifeng Yao, Haichun Liu, Tao Lu, Yanmin Zhang, Yadong Chen, Jun Shen","doi":"10.1021/acs.jcim.4c01175","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-ligand binding affinity prediction is a crucial and challenging task in the field of drug discovery. However, traditional simulation-based computational approaches are often prohibitively time-consuming, limiting their practical utility. In this study, we introduce a novel deep learning method, CPIScore, which leverages the capabilities of Transformer and Graph Convolutional Networks (GCN) to enhance the prediction of protein-ligand binding affinity. CPIScore utilizes the Transformer architecture to capture comprehensive global contexts of protein and ligand sequences, while the GCN component effectively extracts local features from small molecular graphs. Our results demonstrate that CPIScore surpasses both traditional machine learning and other deep learning models in accuracy, achieving a Pearson's <i>r</i> of 0.74 on our test set. Furthermore, CPIScore has been validated across multiple targets, proving its ability to discern inhibitors from a diverse compound library with high enrichment rates. Notably, when applied to a generated focused library of compounds, CPIScore successfully identified six potent small-molecule inhibitors of ATR, which were tested experimentally and four small molecules exhibited inhibitory activity below ten nanomoles. These results highlight CPIScore's potential to significantly streamline and enhance the efficiency of drug discovery processes.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"8809-8823"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01175","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-ligand binding affinity prediction is a crucial and challenging task in the field of drug discovery. However, traditional simulation-based computational approaches are often prohibitively time-consuming, limiting their practical utility. In this study, we introduce a novel deep learning method, CPIScore, which leverages the capabilities of Transformer and Graph Convolutional Networks (GCN) to enhance the prediction of protein-ligand binding affinity. CPIScore utilizes the Transformer architecture to capture comprehensive global contexts of protein and ligand sequences, while the GCN component effectively extracts local features from small molecular graphs. Our results demonstrate that CPIScore surpasses both traditional machine learning and other deep learning models in accuracy, achieving a Pearson's r of 0.74 on our test set. Furthermore, CPIScore has been validated across multiple targets, proving its ability to discern inhibitors from a diverse compound library with high enrichment rates. Notably, when applied to a generated focused library of compounds, CPIScore successfully identified six potent small-molecule inhibitors of ATR, which were tested experimentally and four small molecules exhibited inhibitory activity below ten nanomoles. These results highlight CPIScore's potential to significantly streamline and enhance the efficiency of drug discovery processes.

CPIScore:用于快速评分和解释蛋白质配体结合相互作用的深度学习方法。
蛋白质与配体的结合亲和力预测是药物发现领域中一项至关重要且极具挑战性的任务。然而,传统的基于模拟的计算方法往往耗时过长,限制了其实用性。在本研究中,我们介绍了一种新颖的深度学习方法 CPIScore,它充分利用了 Transformer 和图形卷积网络(GCN)的功能,以增强对蛋白质配体结合亲和力的预测。CPIScore 利用 Transformer 架构捕捉蛋白质和配体序列的全面全局上下文,而 GCN 组件则有效地从小型分子图中提取局部特征。我们的研究结果表明,CPIScore 在准确性上超越了传统机器学习和其他深度学习模型,在测试集上的皮尔森 r 达到了 0.74。此外,CPIScore 还在多个靶点上进行了验证,证明它有能力从具有高富集率的多样化化合物库中识别抑制剂。值得注意的是,当将 CPIScore 应用于生成的重点化合物库时,它成功地鉴定出了六种强效的 ATR 小分子抑制剂,经过实验测试,其中四种小分子的抑制活性低于 10 纳摩尔。这些结果凸显了 CPIScore 在显著简化和提高药物发现过程效率方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信